
WhyNot: Debugging Failed Queries in Large Knowledge Bases

Hans Chalupsky and Thomas A. Russ
Information Sciences Institute
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292

Abstract

When a query to a knowledge-based system fails and returns
�unknown�, users are confronted with a problem: Is relevant
knowledge missing or incorrect? Is there a problem with the
inference engine? Was the query ill-conceived? Finding the
culprit in a large and complex knowledge base can be a hard
and laborious task for knowledge engineers and might be im-
possible for non-expert users. To support such situations we
developed a new tool called �WhyNot� as part of the Pow-
erLoom knowledge representation and reasoning system. To
debug a failed query, WhyNot tries to generate a small set of
plausible partial proofs that can guide the user to what knowl-
edge might have been missing, or where the system might
have failed to make a relevant inference. A Þrst version of
the system has been deployed to help debug queries to a ver-
sion of the Cyc knowledge base containing over 1,000,000
facts and over 35,000 rules.

Introduction
Every knowledge representation system deserving of its
name has a reasoning component to allow the derivation
of statements that are not directly asserted in the knowl-
edge base but instead follow from the facts and rules that
are asserted. A common approach is to use the language
of some symbolic logic L as the knowledge representation
(KR) language and an implementation of a proof procedure
for L as the reasoning (R) engine. This results in what
is usually called a knowledge representation and reasoning
(KR&R) system (such as Loom, PowerLoom, Classic, Cyc,
SNePS, etc.). For example, in a KR&R system based on
Þrst-order predicate logic, one can represent facts and rules
like the following (we will use KIF notation (Genesereth
1991) throughout this paper):

(person fred)
(citizen-of fred germany)
(national-language-of germany german)

(forall (?p ?c ?l)
(=> (and (person ?p)

(citizen-of ?p ?c)
(national-language-of ?c ?l))

(speaks-language ?p ?l)))

When asked about the truth of (speaks-language fred
german), the KR&R system can use logical inference and

Copyright c© 2002, American Association for ArtiÞcial Intelli-
gence (www.aaai.org). All rights reserved.

answer �true�. When asked about (speaks-language fred
french), however, the system has to answer �unknown�,
since it does not have enough information to answer this
question. Here and throughout the rest of this paper we make
an open world assumption, that is, what is in a knowledge
base is assumed to be an incomplete model of the world.
The larger the knowledge base grows, the more questions

the system can answer; however, that set is usually small
compared to the set of interesting questions within its do-
main that it cannot answer. Therefore, a very common query
response is �unknown.� While this is expected, it can be
frustrating for knowledge engineers as well as non-expert
users, in particular, if the system should have known the
answer. The problem is exacerbated by the fact that the
system cannot provide a good explanation for such failures
beyond that everything it tried to derive an answer failed.
Standard explanation techniques for logical reasoning rely
on the availability or constructibility of a proof that can
then be rendered and explained to a user (Chester 1976;
McGuinness 1996). In this case, these techniques do not
apply, since no successful proof was found among the pos-
sibly very many that were tried. Debugging such a failure
manually can be very difÞcult and tedious.
In this paper we describe a novel query debugging tool

called WhyNot, that is designed to help a human user to an-
alyze why a query could not be answered successfully by the
underlying KR&R system. It does so by trying to generate
plausible partial proofs that approximate the correct (or ex-
pected) proof that would answer the query. The gaps in such
a partial proof can then be scrutinized by the user to see
whether they constitute missing knowledge or some other
deÞciency of the KB or query. A Þrst version of WhyNot
has been implemented and used successfully with a large
Cyc knowledge base containing over a 1,000,000 facts and
over 35,000 rules.

The Problem
KR&R systems can commonly answer two types of queries:
(1) true/false questions such as �is it true that (speaks-
language fred german)�, and (2) Wh-questions such as �re-
trieve all ?x such that (speaks-language fred ?x).� We say
that a true/false query fails, if the system can neither prove
the queried fact to be true nor to be false and returns �un-
known.� A Wh-query fails if the system fails to generate



a complete set of answers relative to the expectations of the
user or using application. In this paper we are primarily con-
cerned with failed true/false questions. Our techniques apply
toWh-queries as well, but the openness ofWh-queries intro-
duces an extra level of difÞculty; however, any one missing
value can be analyzed by a corresponding true/false query.
Here are common reasons why queries fail:

Missing knowledge such as relevant facts or rules that are
missing from the KB.

Limitations such as using an incomplete reasoner or an un-
decidable logic, resource exhaustion such as search depth
cutoffs or timeouts, etc.

User misconceptions where the user chooses vocabulary
missing from the KB, or asks a query that does not ac-
tually express what s/he intended to ask, or if the queried
fact contradicts what is in the KB.

Bugs in the KB such as incorrect facts or rules or bugs in
the inference engine or surrounding software.

A query may fail because one or more of these failure
modes is to blame. Some failure modes such as using unde-
Þned vocabulary or exhaustion of inference engine resources
(timeouts) can be detected by the KR&R system and com-
municated to the user. Others will simply lead to silent fail-
ure. All failures including exhaustion of allotted inference
resources can present difÞcult problems to solve. The reason
for this difÞculty is that in such a case the KR&R system has
explored a potentially very large search space to generate an
answer, but everything it tried to derive an answer failed.
Standard explanation techniques to explain results of log-

ical inference cannot be used to help a user with this prob-
lem, since they all require a data structure representing a
derivation or proof for the answer to a query. Such proof
structures are either generated automatically by the infer-
ence engine when the query is answered, regenerated during
a rerun of the query in �explanation mode�, or generated in-
dependently from how it was derived originally by the core
inference engine. Which method is chosen depends on the
underlying logic and performance optimizations of the infer-
ence engine. See (McGuinness 1996) for an example where
proofs are generated for the sole purpose of producing ex-
planations. Once a proof has been found, it can be rendered
into an explanation for the user.
When a query fails, however, there is no relevant proof

that could be explained to the user. Instead, the traditional
approach to solve such a problem is to manually examine
� if available � inference traces or failure nodes of search
trees to see where something might have gone wrong. Since
queries in logic-based systems can easily generate very large
search trees due to the many different ways in which answers
can be derived, this process can require a lot of analytical
skills, expertise and time. Such problems are difÞcult for
knowledge engineers, and often unsolvable for non-expert
users.
To enable the use of standard proof-based explanation

techniques to help with query failures, we need to generate
some kind of proof despite the fact that there is not enough
information in the KB to support a proof. The WhyNot tool

accomplishes that by generating plausible partial proofs. A
partial proof is a proof with some of its preconditions un-
satisÞed (or gaps). If the proof is plausible and close to the
correct or expected proof, these gaps can pinpoint missing
knowledge that when added to the KB will allow the query
to succeed.
Generating plausible partial proofs within large knowl-

edge bases poses two difÞcult challenges: (1) determining
what it means for a proof to be plausible among the many
possible ones, and (2) performance, i.e., Þnding plausible
partial proofs without looking at too many options. How
these challenges are tackled by WhyNot is described in the
remainder of the paper.
The current version of the WhyNot tool primarily con-

centrates on the detection of missing facts. Other failures
such as missing rules, incorrect knowledge, etc. might also
be made easier to diagnose in some cases, but no speciÞc
support for these failure modes is available yet. For the ap-
plication scenario of knowledge base development by users
who are not knowledge engineers, being able to suggest po-
tentially missing facts is an important step for helping them
debug failed queries and to extend the KB.

Plausible Partial Proofs
The WhyNot tool supports the analysis of query failures
by trying to generate ranked plausible partial proofs. In-
tuitively, a plausible partial proof approximates the correct
proof the system would Þnd had it all the correct knowledge
and capabilities. It is an approximation, since it might not
completely match the structure of the correct proof and will
not have all its preconditions satisÞed. We claim that if we
can Þnd a good enough approximation of the correct proof,
it will allow the user to determine what pieces of knowl-
edge are missing or what other failures might have occurred
that prevented the query to succeed. By generating multiple
partial proofs ranked by plausibility, we can provide expla-
nation alternatives and enable the user to focus on the most
plausible explanations among a potentially very large set of
possible ones.
A partial proof for a queried fact q is any proof

P : {p1, . . . , pn} � q

where one or more of the premises pi are not known to be
true. A plausible partial proof is one where the unknown
premises pi could �reasonably� be assumed to be true. This
is of course a semantic notion that can ultimately only be
decided by the user.
A good plausible proof is one that is well entrenched in

the knowledge base by applying relevant facts and rules, and
that maximizes the ratio of known to unknown premises.
Note that for any failed query q a minimal plausible partial
proof is

Q : {q} � q

This is akin to saying �if I had known that q is true I could
have told you that q is true.� This is only a good partial proof
if there are no rules available to conclude q or if we cannot
adequately satisfy the preconditions of any applicable rules.
Generating plausible partial proofs is a form of abduc-

tive reasoning. In abduction, q would be something that was



observed (e.g., the symptoms of a disease), and the set of pi

whose truth values were not a-priori known would be the ab-
duced explanation for q (e.g., the set of diseases that would
explain the symptoms). In a standard abductive reasoner the
abduced hypotheses are non-monotonic inferences that are
added to the theory. In our case, they are used to generate
hypothetical answers to the failed query q, for example, �if
pi and pj were true then q would be true�. This therefore
is related to the work on hypothetical question answering by
Burhans and Shapiro (1999).
Judging the plausibilityof a partial proof is a similar prob-

lem to deciding between alternative explanations in abduc-
tive inference. In the abduction literature, many different cri-
teria have been proposed, for example, explanations should
be minimal, basic, consistent, most speciÞc, least speciÞc,
least cost, etc. The best choice depends very much on the
problem domain. For WhyNot we want a criterion that re-
duces the number of partial proofs for a particular query to
an amount that is amenable to manual inspectionwithout be-
ing too discriminating. For example, the strongest plausibil-
ity criterion we can apply within a logic-based framework
is to require that the set of unknown premises be logically
consistent with the rest of the knowledge base. However,
large knowledge bases, in particular if they are under devel-
opment, are often not consistent or correct; therefore, we do
not want to be too aggressive about weeding out inconsis-
tent premises, since they might indicate other problems in
the KB.

Example
Before we describe the plausibility scoring and proof gener-
ation scheme, we want to give an example how the WhyNot
tool can be used to analyze the failure of a query. Consider
the following small knowledge base fragment:

(and (person fred) (person phil) (person susi))
(parent-of fred phil)
(national-language-of usa english)
(national-language-of france french)
(national-language-of germany german)
(national-language-of canada english)
(national-language-of canada french)

(forall (?p ?c ?l)
(=> (and (person ?p)

(citizen-of ?p ?c)
(national-language-of ?c ?l))

(speaks-language ?p ?l)))

(forall (?p ?c ?l)
(=> (and (person ?p)

(birth-place-of ?p ?c)
(national-language-of ?c ?l))

(native-language-of ?p ?l)))

(forall (?p ?l)
(=> (and (person ?p)

(native-language-of ?p ?l))
(speaks-language ?p ?l)))

(forall (?p ?l)
(=> (exists (?f)

(and (parent-of ?p ?f)
(native-language-of ?f ?l)))

(speaks-language ?p ?l)))

If we ask the system whether (speaks-language fred ger-
man) is true, it returns �unknown�, since at this point all that
is known about Fred is that he is a person and has Phil as a
parent. If we now run the WhyNot tool on the failed query

we get the following two explanations sorted by score (the
plausibility score can be in the range of 1.0 for strictly true
to −1.0 for strictly false):

Explanation #1 score=0.708:

1 (SPEAKS-LANGUAGE FRED GERMAN)
is partially true by Modus Ponens
with substitution ?p/FRED, ?l/GERMAN, ?f/PHIL
since 1.1 ! (forall (?p ?l)

(<= (SPEAKS-LANGUAGE ?p ?l)
(exists (?f)

(and (PARENT-OF ?p ?f)
(NATIVE-LANGUAGE-OF ?f ?l)))))

and 1.2 ! (PARENT-OF FRED PHIL)
and 1.3 (NATIVE-LANGUAGE-OF PHIL GERMAN)

1.3 (NATIVE-LANGUAGE-OF PHIL GERMAN)
is partially true by Modus Ponens
with substitution ?p/PHIL, ?l/GERMAN, ?c/GERMANY
since 1.3.1 ! (forall (?p ?l)

(<= (NATIVE-LANGUAGE-OF ?p ?l)
(exists (?c)

(and (PERSON ?p)
(BIRTH-PLACE-OF ?p ?c)
(NATIONAL-LANGUAGE-OF ?c ?l)))))

and 1.3.2 ! (PERSON PHIL)
and 1.3.3 ? (BIRTH-PLACE-OF PHIL GERMANY)
and 1.3.4 ! (NATIONAL-LANGUAGE-OF GERMANY GERMAN)

Explanation #2 score=0.556:

2 (SPEAKS-LANGUAGE FRED GERMAN)
is partially true by Modus Ponens
with substitution ?p/FRED, ?l/GERMAN, ?c/GERMANY
since 2.1 ! (forall (?p ?l)

(<= (SPEAKS-LANGUAGE ?p ?l)
(exists (?c)

(and (PERSON ?p)
(CITIZEN-OF ?p ?c)
(NATIONAL-LANGUAGE-OF ?c ?l)))))

and 2.2 ! (PERSON FRED)
and 2.3 ? (CITIZEN-OF FRED GERMANY)
and 2.4 ! (NATIONAL-LANGUAGE-OF GERMANY GERMAN)

In each explanation propositions that were found to be
directly asserted in the KB are marked with �!� and un-
known propositions are marked with �?�. Propositions with-
out a mark such as 1.3 are supported by a further reason-
ing step. Each explanation describes a partial proof for the
failed query. If all its unknown leafs marked with �?� would
be true, the query would follow.
Despite the differences in score, both explanations above

identify only a single missing fact that would allow the
derivation of the expected answer. The Þrst explanation
scores higher because a larger percentage of the total number
of ground facts needed in the proof tree are present. Since
the plausibility scoring scheme will always be imperfect and
since the system has no way to decide a priori which of
those missing facts is more likely, we present multiple ex-
planations for the user to consider.
By default, theWhyNot tool suppresses explanations with

an absolute score of less than 0.3. If we lower the threshold
to 0.0 we get the following additional explanation:

Explanation #3 score=0.208:

3 (SPEAKS-LANGUAGE FRED GERMAN)
is partially true by Modus Ponens
with substitution ?p/FRED, ?l/GERMAN, ?f/SUSI
since 3.1 ! (forall (?p ?l)

(<= (SPEAKS-LANGUAGE ?p ?l)
(exists (?f)

(and (PARENT-OF ?p ?f)
(NATIVE-LANGUAGE-OF ?f ?l)))))

and 3.2 ? (PARENT-OF FRED SUSI)
and 3.3 (NATIVE-LANGUAGE-OF SUSI GERMAN)

3.3 (NATIVE-LANGUAGE-OF SUSI GERMAN)
is partially true by Modus Ponens



with substitution ?p/SUSI, ?l/GERMAN, ?c/GERMANY
since 3.3.1 ! (forall (?p ?l)

(<= (NATIVE-LANGUAGE-OF ?p ?l)
(exists (?c)

(and (PERSON ?p)
(BIRTH-PLACE-OF ?p ?c)
(NATIONAL-LANGUAGE-OF ?c ?l)))))

and 3.3.2 ! (NATIONAL-LANGUAGE-OF GERMANY GERMAN)
and 3.3.3 ? (BIRTH-PLACE-OF SUSI GERMANY)
and 3.3.4 ! (PERSON SUSI)

This last explanation scores lower, since two additional
facts would need to be added to the KB for the question to be
answered true. It was generated by postulating bindings for
the variable ?f in rule (3.1). In explanation 1 ?f was bound
by a direct assertion. Now, in addition to Susi, there could
be many other persons who might be parents of Fred. Some
of them would be implausible, such as in the following sup-
pressed partial proof:

4 (SPEAKS-LANGUAGE FRED GERMAN)
is partially true by Modus Ponens
with substitution ?p/FRED, ?l/GERMAN, ?f/FRED
since 4.1 ! (forall (?p ?l)

(<= (SPEAKS-LANGUAGE ?p ?l)
(exists (?f)

(and (PARENT-OF ?p ?f)
(NATIVE-LANGUAGE-OF ?f ?l)))))

and 4.2 X (PARENT-OF FRED FRED)
and 4.3 (NATIVE-LANGUAGE-OF FRED GERMAN)

The explanation is suppressed, because Fred cannot be his
own parent (clause 4.2), since parent-of is asserted to be ir-
reßexive. In large and complex KBs, many of the dead ends
pursued by the inference engine are nonsensical inferences
such as the above. The primary function of the WhyNot
module is to separate the wheat from the chaff and present
a small number of good guesses for plausible partial infer-
ences to the user. This allows the WhyNot module to reject
the explanation on grounds of inconsistency, since (parent-
of fred fred) is provably false using very simple inference. In
general, however, we cannot rely on that completely, since
the more ground a KB covers, the more room there is for
unspeciÞed semantic constraints; therefore, we always need
a human user to make the Þnal judgment.

Scoring Partial Proofs
A good plausible proof is one that maximizes the ratio of
known to unknown premises while at the same time being
well entrenched in the knowledge base. The assumed un-
knowns should also not be in direct conßict with other facts
in the KB. We do not require full consistency, (1) since it is
not computable, and (2) since it would be much too costly to
try to even approximate. Whenever we accept an unknown
premise, we therefore only check for its falsity via quick
lookup or shallow reasoning strategies. To implement these
plausibility heuristics we use the following score computa-
tion rules:
Atomic goals p: The score of an atomic proposition p is

1.0 if it was found strictly true, −1.0 if it was found strictly
false or 0.0 if it is completely unknown. If it was inferred
by a rule of inference such as Modus Ponens, its score is
determined by the score combination function of that rule.
AND-introduction goals (and p1 . . . pn ): the score of a

conjunction is computed as a weighted average of the scores
of its conjuncts: let s(pi) be the score of a conjunct and

w(pi) be its weight. The resulting score is

score =
∑n

i=1 w(pi)s(pi)∑n
j=1 w(pj)

If any of the pi is found to be strictly false, the conjunction
fails strictly and the resulting score is −1.
The weights w(pi) are used to scale down the importance

of certain classes of propositions. For example, a subgoal of
the form (not (= ?x ?y)) has a very high likelihood to succeed
for any pair of bindings. We therefore scale down the impor-
tance of the truth of such a subgoal by heuristically giving
it a low weight of 0.1. Similarly, type constraints such as
person in (and (person ?x) (person ?y) (father-of ?x ?y)) are
given somewhat less importance, since in general they are
more likely to be found true and they are often redundant.
These are of course only simple heuristics in the absence of
a more general scheme to determine the semantic contribu-
tion of a particular conjunct (see (Hobbs et al. 1993)[p.84]
for some more discussion of this issue). Future versions of
WhyNot might perform statistical analysis of the underlying
KB to determine these weights automatically.
OR-introduction goals (or p1 . . . pn ): the score of a dis-

junction is the weighted score (w(pi)s(pi) of the Þrst dis-
junct (starting from the current choice point) whose score
exceeds the current minimum cutoff. A higher-scoring dis-
junct can be found when we backtrack or generate the next
partial proof.
Implication elimination (Modus Ponens) goals: when

concluding q from p and (⇒ p q) we compute s(q) as s(p)d
where d is a degradation factor that increases with the depth
of a proof. The rationale for the degradation factor is that the
longer a partial reasoning chain is, the higher the likelihood
that it is incorrect. For any unknown proposition p partial
support from chaining through a rule is seen as support for
its truth, but that support is counted less and less the deeper
we are in the proof tree.

Generating Partial Proofs
The WhyNot partial proof generator is built into the infer-
ence engine of the PowerLoom KR&R system. PowerLoom
uses a form of natural deduction to perform inference and it
combines a forward and backward chaining reasoner to do
its work. PowerLoom�s inference engine is a �pragmatic�
implementation. It is not a complete theorem prover for
Þrst-order logic, yet it has various reasoning services such as
type level reasoning, relation subsumption, a relation classi-
Þer, selective closed world reasoning, etc. that go beyond
the capabilities of a traditional Þrst-order theorem prover. It
also has a variety of controls for resource bounded inference
to allow it to function with large knowledge bases.
The backward chainer uses depth-Þrst search with

chronological backtracking as its primary search strategy.
Memoization caches successful and, if warranted, failed
subgoals to avoid rederivation. The ordering of conjunc-
tive goals is optimized by considering various costs such as
unbound variables, goal fanout and whether a subgoal can
be inferred by rules. Duplicate subgoals are detected and
depth cutoffs and timeouts provide resource control. Once



a solution has been found, the next one can be generated by
continuing from the last choice point.
The partial proof generator is part of PowerLoom�s back-

ward chainer. Originally, it was built to overcome the gen-
eral brittleness of logic-basedKR&R systems by providing a
partial match facility, i.e., to be able to Þnd partial solutions
to a query when no strict or full solutions can be found. The
WhyNot tool extends this facility for the purposes of gen-
erating plausible partial proofs. The partial proof generator
keeps trying to prove subgoals of a goal even if some other
conjoined subgoals already failed. Once all subgoals have
been attempted, instead of a truth value a combined score is
computed to reßect the quality of the solution, and that score
is then propagated to the parent goal.
To retain some pruning ability, a minimally required cut-

off score is computed at each state in the proof tree and fur-
ther subgoaling is avoided if it can be determined that the re-
quired cutoff score is unachievable. The top-level controller
uses the cutoff mechanism to generate a set of better and
better proofs by using the scores of previously found proofs
as a minimal score cutoff. To avoid having high-scoring
proofs found early mask out other slightly lesser scoring but
equally plausible proofs, the controller accumulates at least
N proofs before it uses the worst score of the current top-N
proofs as the cutoff (currently, we use N = 10). While the
WhyNot partial proof generator is running, justiÞcations for
(partially) satisÞed subgoals are kept which results in a par-
tial proof data structure for satisÞed top-level goals. During
normal operation of the inference engine, such justiÞcations
are not recorded for performance reasons.

Taming the Search
Generating plausible partial proofs is a form of abduc-
tive reasoning and even restricted forms of abduction are
computationally intractable (cf., (Bylander et al. 1991;
Selman & Levesque 1990)). In practice, generating partial
proofs provides less opportunities to prune the search tree.
For example, if we are trying to prove a conjunction as part
of a strict proof, we can stop and backtrack as soon as we fail
to prove one of the conjuncts. If we are looking for a partial
proof we cannot do that, since the failed conjunct might be
the missing knowledge we are trying to identify. We need
to examine the other conjuncts to determine whether the re-
mainder of the proof is plausible. For this reason, generating
partial proofs requires different search control than generat-
ing regular proofs. Time limits are an important means to
keep the effort spent under control. Additionally, the min-
imal cutoff score mechanism described above can reinstate
some pruning opportunities, but by its nature partial proof
search will be less focused. Particularly problematic can be
generator subgoals as created by rules such as the following:

(forall (?p ?l)
(=> (exists (?f)

(and (person ?f)
(parent-of ?p ?f)
(native-language-of ?f ?l)))

(speaks-language ?p ?l)))

When we are trying to prove the goal (speaks-language
fred german) and backchain into the above rule, PowerLoom

tries to prove the existential by introducing a generator sub-
goal of the following form:

(and (parent-of fred ?f)
(person ?f)
(native-language-of ?f german))

The conjunctive goal optimizer reordered the subgoals to
have the one that is expected to generate the least number of
bindings for ?f as the Þrst one. Once ?f is bound the remain-
ing goals are harmless and can be solved by simple lookupor
chaining. In the strict case, if the Þrst subgoal fails to gener-
ate any binding for ?f the existential goal simply fails. If we
are generating partial proofs the failed conjunct is skipped
and the next conjunct is tried with ?f still unbound. This can
constitute a problem, since the number of bindings gener-
ated for ?f by either of the remaining clauses might be much
larger than what was estimated for the Þrst conjunct. If we
simply go on to the next clause, we would generate the set
of all people in the KB which could be very large. As a Þrst
line of defense, we have to reoptimize the remaining clauses,
since with ?f still unbound it might now be better to try the
last clause Þrst. If the remaining clauses are still too uncon-
strained, for example, if the language variable ?l was also
unbound, we simply skip them and fail since the large num-
ber of unconnected bindings would probably not be useful
for an explanation anyway.
Another search problem that surfaced when applying

WhyNot to a very large KB such as Cyc was that not all
applicable rules were tried due to query timeouts. In normal
processing, this is not usually a problem, since aggressive
pruning means rules often fail fairly early in their consid-
eration. With the reduced pruning used by WhyNot, this
caused certain rules not to be considered at all. We needed
to change the WhyNot search strategy to �give each rule its
equal chance.� Now whenever it tries to prove a subgoal p
and there are n applicable rules, it allocates 1

n
-th of the re-

maining available time to each rule branch. Time that wasn�t
fully used by one of the rules is redistributed among the re-
maining ones. This time-slicing ensures that we never get
stuck in one subproof without any time left to explore re-
maining alternatives.

Explanation Post-Processing
Before explanations are presented to the user, some post-
processing is required: (1) to remove unnecessary detail and
make them easier to understand, (2) to remove some idiosyn-
crasies introduced by the partial proof search, and (3) to give
some advice on how to interpret the partial proof.
How to best present a proof to a non-expert user has not

been the primary focus of our work. We rely on the fact that
PowerLoom�s natural deduction inference can be translated
fairly directly into explanations; however, some uninforma-
tive proof steps such as AND-introduction or auxiliary steps
needed by the inference engine are suppressed.
A more interesting post-processing step is illustrated by

the following example: suppose we ask (speaks-language
fred french) in the example KB presented above. Just as be-
fore the answer will be �unknown�, but WhyNot will return
a slightly different explanation for the failure:



Explanation #1 score=0.708:

1 (SPEAKS-LANGUAGE FRED FRENCH)
is partially true by Modus Ponens
with substitution ?p/FRED, ?l/FRENCH, ?f/PHIL
since 1.1 ! (forall (?p ?l)

(<= (SPEAKS-LANGUAGE ?p ?l)
(exists (?f)

(and (PARENT-OF ?p ?f)
(NATIVE-LANGUAGE-OF ?f ?l)))))

and 1.2 ! (PARENT-OF FRED PHIL)
and 1.3 (NATIVE-LANGUAGE-OF PHIL FRENCH)

1.3 (NATIVE-LANGUAGE-OF PHIL FRENCH)
is partially true by Modus Ponens
with substitution ?p/PHIL, ?l/FRENCH, ?c/[FRANCE, CANADA]
since 1.3.1 ! (forall (?p ?l)

(<= (NATIVE-LANGUAGE-OF ?p ?l)
(exists (?c)

(and (PERSON ?p)
(BIRTH-PLACE-OF ?p ?c)
(NATIONAL-LANGUAGE-OF ?c ?l)))))

and 1.3.2 ! (PERSON PHIL)
and 1.3.3 ? (BIRTH-PLACE-OF PHIL ?c)
and 1.3.4 ! (NATIONAL-LANGUAGE-OF ?c FRENCH)

The difference is that there were two countries whose na-
tional language was French. This resulted in two almost
identical partial proofs that only differed in the binding for
variable ?c in clauses 1.3.3 and 1.3.4. Instead of making an
arbitrary choice or giving a series of almost identical expla-
nations for each country whose national language is French,
the WhyNot tool collapses those answers into one1. The
result is an intensional explanation which might be para-
phrased as �if for some ?c such that (national-language-of
?c french) it were known that (birth-place-of phil ?c), then
the query could be answered. A few example individuals
that were actually found to make clause 1.3.4 true are anno-
tated in a special syntax in the variable substitution. Once
a generalization has occurred, the part of the inference tree
responsible for generating similar bindings is cut off to force
the generation of the next structurally different proof.

Future Work
One type of post-processing not yet attempted by WhyNot
is to try to give advice how to best interpret a partial proof,
since gaps in a partial proof can be the result of problems
other than missing knowledge. For example, consider this
query given to the Cyc knowledge base: �Can Anthrax
lethally infect animals?� The query fails and WhyNot pro-
duces the explanation shown in Figure 1 (this explanation is
rendered for a non-expert audience and uses Cyc�s natural
language generation mechanism).
The partial proof found by WhyNot points to the relevant

portion of the KB, but here we do not have a case of missing
knowledge. Rule (1.1) is a type-level inheritance rule that
says if some type of organism can lethally infect some type
of host, then subtypes of the organism can infect subtypes
of the host. In other words, if we know anthrax can infect
mammals (fact 1.2), then anthrax can infect sheep. But in-
stead of asking about sheep, the question was about anthrax
infecting animals. What WhyNot could not determine in
clause (1.4) was whether animal is a subtype of mammal.

1In general, even if there were only one binding found for some
variable, the choice might be arbitrary and an intensional explana-
tion might be better; however, currently we only generate an inten-
sional explanation if we Þnd two or more similar bindings.

This is of course not missing knowledge, but the query was
asked about too general a type. One hint to that could have
been that mammals actually are a subtype of animal, and
that these are usually proper subtype relationships; there-
fore, suggesting that animal is a subtype of mammal is un-
likely to be correct. At this point, however, it is not clear
how to reliably make such a determination which is why it
is not yet done.

Related Work
Relatively little has been done in the area of analyzing failed
inferences or queries in KR&R systems. The closest is
McGuinness� (1996) work on providing explanation facili-
ties to description logics, in particular, explaining why some
concept A does not subsume another concept B. Since most
description logics are decidable, non-subsumption can be
determined by having a complete reasoner fail on proving
a subsumption relationship. To explain a non-subsumption
to the user with �everything the system tried failed� is of
course not a good option for the same reasons we out-
lined above. Since the logic is decidable, however, non-
subsumption is constructively provable and explainable by
generating a counter-example. McGuinness� work differs
from our case where we have an (at best) semi-decidable
logic and an incomplete reasoner where the answer to a
query really is unknown and not derivable as opposed to
false.
Kaufmann (1992) describes a utility to inspect the failed

proof output of the Boyer-Moore theorem prover. He claims
that inspection of such output is crucial to the successful use
of the prover. The utilityallows the deÞnition of checkpoints
for situationswhere the prover is trying some fancy strategy,
since this often indicates a processing has entered a dead
end. This tool does not provide automatic analysis of a failed
proof and is geared towards a technical audience.
Gal (1988) and Gaasterland (1992) describe cooperative

strategies for query answering in deductive databases. One
of their main concerns is to provide useful answers or allow
query relaxation in cases where the user has misconceptions
about the content of the database. These techniques han-
dle some query failure modes not addressed by our tool and
might be useful additions in future versions.
Finally, there is a large body of work describing how

to best explain the reasoning results of expert systems,
planners, theorem provers, logic programs, etc. to users
(see for example, (Chester 1976; Wick & Thompson 1992;
McGuinness 1996)). Some of these techniques could be ap-
plied to the output of our tool. Since we wished to focus our
research on generating the plausible proofs we use a rela-
tively simple strategy to describe the partial natural deduc-
tion proofs found by the system.

Using WhyNot with Cyc
The PowerLoom WhyNot tool has been integrated into the
Cyc tool suite to support the debugging of failed queries.
This integration is part of DARPA�s Rapid Knowledge For-
mation program (RKF) � an effort to research and develop
new techniques and technologies to widen the knowledge



Figure 1: Showing a WhyNot Explanation in Cyc

acquisition bottleneck. The primary goal is to enable domain
experts such as microbiologistswho are not computer scien-
tists to author competent knowledge bases of their Þeld of
expertise with no or only minimal help from knowledge en-
gineers. Two teams, one led by Cycorp and one by SRI, are
each developing a set of knowledge acquisition tools whose
performance is repeatedly evaluated in the context of a chal-
lenge problem. Once this evaluation process is completed,
we expect to be able to provide both quantitative data and
qualitative feedback about the performance and usefulness
of the WhyNot tool.

The tool developed by Cycorp is built around the large
Cyc common sense knowledge base (Lenat 1995). The ver-
sion of Cyc used within RKF contains over 1,000,000 facts
and over 35,000 rules. One of the claims of Cycorp�s ap-
proach is that the large amount of common sense knowledge
available in Cyc makes it easier and more efÞcient to enter
and verify new knowledge. Cycorp�s tool also contains new,
fairly sophisticated natural language parsing and generation
components. All input from domain experts is given in nat-
ural language (in some cases constrained by templates), and
any Cyc knowledge that is displayed is rendered in natural

language. The expert therefore never has to use the MELD
KR language used internally by Cyc. The interface to Cyc
is via a Web browser as shown in the screenshot in Figure 1.

WhyNot can be viewed as a Cyc Plug-in that can provide
special reasoning services not available in Cyc. WhyNot
runs as an external knowledge module connected to Cyc via
the VirB3 blackboard developed by Cycorp. It is written
in our own STELLA programming language (Chalupsky &
MacGregor 1999) which can be translated into Lisp, C++
and Java. In this application we used the Java translation
which can be shipped as a 2 Megabyte Java Jar Þle. A small
amount of SubLisp code was also written to provide some
extensions to the Cyc API. SubLisp is a programming lan-
guage developed by Cycorp that, similar to STELLA, tries
to preserve a Lisp-based development environment while al-
lowing to release code in mainstream language such as C.

When domain experts are adding knowledge or testing the
knowledge they authored, they have to query the Cyc knowl-
edge base. When a query fails and returns unknown as its re-
sult, they can ask the WhyNot module to analyze the failure.
WhyNot requests are processed in the background and the
user can perform other knowledge acquisition tasks while



waiting for a response.
WhenWhyNot receives such a request on the blackboard,

it Þrst translates the failed query expression from MELD
into KIF and then starts to derive plausible partial proofs.
Since the WhyNot module runs in a completely separate im-
plementation outside of Cyc, it needs to get access to all
the relevant knowledge in the Cyc KB. It does so by paging
in knowledge from Cyc completely dynamically on demand
as it is needed by the PowerLoom inference engine. To do
that a knowledge paging mechanism is used that maps Pow-
erLoom�s KB indexing and access language onto that of a
foreign knowledge store such as Cyc. The Cyc API pro-
vides a rich set of access and KB indexing functions that
make this fairly efÞcient. The connection to the Cyc API
is not through the blackboard but via a dedicated TCP/IP
channel to get higher throughput. Once knowledge is paged
in it is cached for efÞciency. Updates on the Cyc side cause
relevant portions of the paging cache to be ßushed. In this
application large portions of the Cyc KB can be considered
read-only which makes this caching scheme feasible.
Each assertion shipped from Cyc to PowerLoom is trans-

lated from MELD to KIF and back again. This is not too
difÞcult, since the languages are fairly similar. An initial
translation is performed on the Cyc side, and any remain-
ing translations are performed by a small set of OntoMorph
rewrite rules (Chalupsky 2000). Once a WhyNot explana-
tion has been generated, it is rendered into HTML and the
referenced facts and rules are run through Cyc�s natural lan-
guage generator. The result is then shipped back to Cyc
where it appears on the agenda and can be displayed by the
user (see Figure 1).
Running partial inference dynamically against a Cyc KB

proved to be quite a challenging task. Cyc contains relations
such as objectFoundInLocation that have hundreds of rules
associated with them. Proper search and resource control as
described above is therefore extremely important. Similarly,
since paging in knowledge from Cyc is somewhat slow, min-
imizing page-in was a priority. The resulting system is not
blazingly fast, but the performance is acceptable. Generat-
ing the explanation for the query in Figure 1 takes about 30
seconds the Þrst time around including the time to page in
all the relevant knowledge. Subsequent calls run in less than
5 seconds. WhyNot queries run with a timeout of three min-
utes which seems to be a good compromise for the queries
encountered so far. Since WhyNot queries are triggered by
the user and would otherwise involve time-consuming man-
ual debugging, the reported run times and timeouts seem to
be acceptable.

Acknowledgements This research was supported by the
Defense Advance Research Projects Agency under Air
Force Research Laboratory contract F30602-00-C-0160.

References
Burhans, D., and Shapiro, S. 1999. Finding hypotheti-
cal answers with a resolution theorem prover. In Papers
from the 1999 AAAI Fall Symposium on Question Answer-
ing Systems, Technical Report FS-99-02, 32�38. Menlo
Park, CA: AAAI Press.

Bylander, T.; Allemang, D.; Tanner, M.; and Josephson, J.
1991. The computational complexity of abduction. ArtiÞ-
cial Intelligence 49(1�3):25�60.
Chalupsky, H., and MacGregor, R. 1999. STELLA � a
Lisp-like language for symbolic programming with deliv-
ery in Common Lisp, C++ and Java. In Proceedings of the
1999 Lisp User Group Meeting. Berkeley, CA: Franz Inc.
Chalupsky, H. 2000. OntoMorph: a translation system for
symbolic knowledge. In Cohn, A.; Giunchiglia, F.; and
Selman, B., eds., Principles of Knowledge Representation
and Reasoning: Proceedings of the Seventh International
Conference (KR2000). San Francisco, CA: Morgan Kauf-
mann.
Chester, D. 1976. The translation of formal proofs into
English. ArtiÞcial Intelligence 7(3):261�278.
Gaasterland, T. 1992. Cooperative explanation in deduc-
tive databases. In AAAI Spring Symposium on Cooperative
Explanation.
Gal, A. 1988. Cooperative Responses in Deductive
Databases. Ph.D. Dissertation, University of Maryland,
Department of Computer Science. CS-TR-2075.
Genesereth, M. 1991. Knowledge interchange format. In
Allen, J.; Fikes, R.; and Sandewall, E., eds., Proceedings of
the 2nd International Conference on Principles of Knowl-
edge Representation and Reasoning, 599�600. San Mateo,
CA, USA: Morgan Kaufmann Publishers.
Hobbs, J.; Stickel, M.; Appelt, D.; and Martin, P. 1993.
Interpretation as abduction. ArtiÞcial Intelligence 63(1�
2):69�142.
Kaufmann, M. 1992. An assistant for reading Nqthm proof
output. Technical report 85, Computational Logic.
Lenat, D. 1995. CYC: A Large Scale Investment in
Knowledge Infrastructure. Communications of the ACM
38(11):32�38.
McGuinness, D. 1996. Explaining Reasoning in Descrip-
tion Logics. Ph.d. dissertation, Department of Computer
Science, Rutgers University, New Brunswick, New Jersey.
Selman, B., and Levesque, H. 1990. Abductive and de-
fault reasoning: A computational core. In Dietterich, T.,
and Swartout, W., eds., Proceedings of the Eighth National
Conference on ArtiÞcial Intelligence, 343�348. Menlo
Park, CA: AAAI Press.
Wick, M., and Thompson, W. 1992. Reconstructive expert
system explanation. ArtiÞcial Intelligence 54(1�2):33�70.


