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Abstract
Large scale engineering projects are created by teams of cooperating engineers who must share knowledge
about the project as it evolves. Sharing of engineering knowledge is actually made more difficult by modern
engineering environments.  First, the computerized engineering environment requires that much of the
knowledge sharing be on a tool-to-tool basis, rather than human-to-human.  Computer tools (3-D modelers,
analysis and simulation tools, etc.) have become the locus of much of the engineering information for a
project.  These tools embody engineering assumptions and methods that are not understood in detail by their
user engineers.  Moreover, the tools use specialized internal representations that are not understood by other
tools.  Second, the connectivity enabled by the modern networked engineering environment greatly increase
the complexity of the interaction environment.  It is virtually impossible for engineers to know who is
likely to be impacted by their decisions, and what issues they need to negotiate.  The Cosmos project is
part of a collection of research efforts that is creating technology to allow engineers to share knowledge
about a design through their tools: when engineers modify a design, the tools they are using automatically
provide relevant updates to other engineers whose work is affected by the change. Cosmos's role is to
support engineering negotiation, illustrated here in the domain of active control of spaceborne structures.
The paper describes the Cosmos Phase I implementation, which provides negotiation support for engineers
from different disciplines cooperating on a design; lessons learned from Phase I, and our current activities in
building the Phase II implementation.

1. Introduction

Large scale engineering is distributed in terms of both space (teams are often geographically

disparate) and time (decision making is often spread out over long periods of time --

sometimes years).   But engineers must share information in order to contribute to a

project.  Engineers do not make decisions in a vacuum.  Each decision is made in the

context of a shared specification and implementation; and each decision must usually be

negotiated with other engineers.   Traditionally, the information that engineers needed to

share was in their heads and in documents.  Cooperation among engineers was achieved by

face-to-face meetings and exchange of documents.

Cosmos is the effort of a team that includes Lori Ogata, Ray Johnson, James Hyde, Bob MacGregor, and
Steve Mudry.
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Now virtually all advanced engineering takes place using computer tools that support

modeling, analysis, simulation, process planning, etc.  Much of the information that the

engineers develop about a project is contained in their computer tools.   Engineering

collaboration must now involve the sharing of computer-based information.   The past 20

years has seen rapid advances in computer aided engineering technology, causing the

productivity of individual engineers to rise dramatically.  Unfortunately, the

computerization of engineering has actually made sharing of engineering information more

difficult in at least two ways:

• Much of the information that must be shared resides only in the specialized

representations of different computer tools, each of which solves only part

of an engineering problem.  Engineers cannot be aware of the information

requirements and capabilities of the tools, and therefore cannot be

responsible for managing tool-to-tool information sharing.

• The large, distributed collaborative environment enabled by modern

computation technology is complex and dynamic.  Normal engineering

processes such as discussion and negotiation require computational support.

1.1 Direct Tool-to-Tool Sharing

Engineering collaboration requires sharing of analyses, the assumptions underlying these

analyses, and the specific methods used to compute the analyses.   Much of this

information is not designed for presentation to the engineers.   Say that a cable design tool

is being used to automatically route a cable within an electromechanical device.  In the left

part of Figure 1 we see the engineer's view of the information: a graphic that is meaningful

to engineers in terms of their external world. In the right part of the figure we see the tool's

representation of the information: a collection of data structures and algorithms that have

been specialized to calculate routings and to produce the desired graphics.  The tool  can

show the result of its routing as a graphic display, and engineers will be able to discuss this

display in a video conference -- but this is not the same as sharing the analysis that

underlies the display. The assumptions on which the routing is based are contained in the

details of the software.  They are certainly not apparent from the graphic output, and the

engineers are probably not aware of all of them.
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BOOL Adjacencies[NSIGNALS,  
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Figure 1: Tools keep much of their knowledge to themselves

The engineer sees a cable routing generated from data structures in the tool; the underlying

assumptions and methods used to determine the routing stay buried in the software.

Furthermore, the routing tool solves only part of the problem.  Its results are most useful to

other tools, which can incorporate those partial results into their analyses and simulations.

It is the combination of the results of several tools that is of interest to engineers.   For

example,  suppose that an engineer proposes moving the cable.  One of the key reasons to

share engineering information is to identify the impact of proposed engineering changes.

However, the data residing in any individual tool does not represent enough information to

determine the impact of the proposed change.  The computer tool used to make the

proposed change probably has a geometric representation of the cable, i.e., its data

represents the cable as a collection of points in space.   But determining the impact of

moving the cable requires interaction with the structural analysis tool: moving the cable may

have structural impact on other parts of the device.   Moving the cable may also have

thermal, electromagnetic, and other impact on other parts of the device. Other tools will

have appropriate thermal, electromagnetic, and other representations of the cable.  It is the

sum of the results of all of the relevant tools that contains the information that engineers

need to collaborate.

The engineers cannot be responsible for incorporating the results of one tool into the other

ones that need it.  Since the underlying assumptions and methods of the tools are not easily

accessible to the human engineers, they cannot know the consequences of feeding the

results of one tool into another.  The tools must exchange information with each other, and

must incorporate this exchanged information into their own analyses or simulations without

human intervention.
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1.2 Automated Information Flow and Negotiation Management

The collaborative environment is a complex place, with participants and roles continually

evolving.  It is difficult to determine which engineers should receive which information, in

what form, and with what frequency.   This includes the problem of deciding which tools

need to exchange information in order to support a specific collaboration.  For both human-

to-human and tool-to-tool sharing, it is very difficult for individual participants to know

who else in the environment should be receiving their ideas and results, and who else's

ideas and results they should be receiving.  If the cable design example mentioned above

were part of a large, distributed project, it would simply not be feasible for the engineer

who wanted to move the cable to know which engineers are likely to be affected by the

change, and what information their tools need to determine the effects of the analysis.

Similarly, on a large project it is simply not feasible for engineers to go through all of the

proposed changes to see which ones are likely to affect them.

It is therefore essential that the environment provide some help in automatically determining

interests and routing information to interested parties.   This must be more than a simple

exchange of messages.   Engineers do not simply exchange information; they negotiate,

explore alternatives, look at previous designs, and so on.  The environment must take a

role in ensuring that all of the engineers required for a particular decision are involved in the

decision process, and that they (and their tools) have the right information at the right time.

In summary, then, in the collaborative engineering environments that are now evolving,

processes like negotiation require computational support, first, because much of the

information that is being negotiated is embedded in the tools, and second, because the

number and diversity of those tools creates an information environment that is too complex

for effective human comprehension and management.

2. Tool Integration at the Knowledge Level

Supporting engineering negotiation in a distributed computational environment requires a

new tool integration technology:  The specialized representations of individual tools must

be linked to a shared, explicitly represented terminology; tools must interact via an

infrastructure that supports incremental exchange of knowledge expressed in this

terminology; and this incremental exchange process must be managed to allow distributed

engineers to participate in the same engineering process.
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Conventional approaches to integrating engineering tools depend on standardized data

structures and a unified engineering model, both of which require substantial (and often

unrealistic) a priori commitments from tool developers.   A collection of research efforts

[PACT, SHADE, SHARE] is creating computational infrastructure technology to allow

engineers to share information at the knowledge level: the environment provides a shared

knowledge base and mechanisms for managing information flow in terms of that

knowledge base.  Engineers working on cable design can communicate with each other

because they share a common basis of knowledge about cables.  They know that cables

contain wires or fibers, and thus carry signals; that they heat up, have weight and volume,

cannot be stretched too far or bent too sharply, attach to ports, and so on.  This knowledge

is much more than a dictionary; it is a knowledge structure or ontology  [Gruber] that

defines the key objects and actions in the domain, and the key relationships among them.

Knowledge level integration is achieved not at the level of data structures and models

within the tools, but at the level of a shared communication language (that is, a system of

grammar, vocabulary, and meanings) among tools.  The vocabulary and meanings of the

language are defined by the ontology, which needs to represent only information that is

useful to other tools -- a small subset of all the data structures within the tool.  Standards

for knowledge level inter-tool languages are starting to emerge, e.g., KIF (Knowledge

Interchange Format) [KIF] and KQML (Knowledge Query and Manipulation Language)

[KQML].

The environment must also provide support for managing the communication process.  As

we have seen, it is not feasible to make individual engineers responsible for understanding

who needs to know what -- they cannot possibly keep track of the range of interests and

capabilities in a dynamically changing environment, especially for a project that lasts over

months or years.  Instead, the environment must provide automated information routing.

If information routing is to be automatic, it must be based on the content of the information.

The knowledge level inter-tool language makes this possible.  All communication in the

environment is in terms of KIF/KQML message interchange.   Engineers and tool

developers create messages to inform the environment of their interests and the capabilities

of their tools (expressed in KIF).  The meanings of the KIF terms are defined in the

ontology.  These messages also specify (in KQML)  the way in which information is to be

given or received (via broadcast or direct connection, intermittently or periodically, etc.).  If
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the situation changes (e.g., interests change or participants change their status in the

environment), update messages are sent.  Because these messages are expressed in the

formal declarative KIF/KQML language, the meaning does not depend on the different

representations of different tools, and can therefore be shared among all tools.  Moreover,

because the meaning is expressed in this declarative manner, special automatic routing

agents in the environment can examine the content of the messages and route them

selectively to participants that have expressed interest in that kind of information.

But even automatic routing is not the whole solution.  When engineers make decisions that

affect the work of other engineers (which means most of their decisions), they must

participate in a negotiation that allows other engineers to assess the impact of the proposed

decision.  The engineers whose work is affected usually offer alternatives and discuss

trade-offs.  Engineers express new decisions and offer alternatives in terms of changes to

component descriptions.  A key part of the engineering negotiation process is to determine

which other components depend on the component being changed, who is responsible for

these components, which of them might have to change, and how difficult it will be for

them  to change.

When projects reach large scale (thousands of interacting components), these questions are

almost impossible to answer without computational aids. In the absence of automated

technology, engineering negotiation must rely on informal understandings (which works

very well for small efforts, but not for large ones) or on rigid controls (which reduces

engineering productivity).  A few research efforts are beginning to create automated

information flow support technology by incorporating "coordination models" into the

environment (e.g., [Petrie]).  That is, interactions among participants are guided by a built-

in model that provides a priori structuring of the interaction process based on theories of

how engineering interaction works or should work.  While this approach provides much

needed organization for the information flow in a collaborative environment, the resulting

organization does not embody enough knowledge to support activities like negotiation.

Cosmos is focusing on supporting the negotiation process by which distributed engineers

agree on engineering decisions.  Engineering negotiation is a sophisticated process,

requiring knowledge about trade-off strategy as well as in-depth engineering knowledge.

Cosmos does not perform the negotiation itself.  Instead, Cosmos receives proposed

engineering changes, automatically determines ramifications of the proposed changes, and

then presents a visualization of these ramifications to all engineers whose work will be
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affected by the proposed changes.  This visualization forms a shared context among these

engineers for negotiating about the proposed change.

3. Cosmos Overview

The Cosmos work was motivated by our experience in implementing a demonstration of

the knowledge level integration technology as part of PACT (Palo Alto Collaborative

Testbed) [PACT].  PACT experiments feature the distributed engineering and simulation of

the Planar Manipulator, a small robotic device for positioning an object on a planar surface.

Responsibility for engineering and simulation of the device has been parceled out among

four independently developed systems: Designworld handles the electronic circuitry of the

Planar Manipulator, NVisage the software controller, Next-Cut the physical mechanism,

and DME the power train.

Simulation and engineering in this environment requires the interoperation of these

systems.  For example, during a PACT simulation, DME discovers that the motor would

burn out if it were subjected to the simulated loads.  It alerts the engineers to that fact,

causing them to replace the existing motor with a larger one in the design.  The engineer

chooses a larger motor, and Next-Cut notices that this motor requires a larger drive shaft,

and that a larger shaft hole must be engineered in the motor housing.  Next-Cut then goes

on to create a process plan to machine that hole.

This interaction requires a great deal of knowledge sharing.  But so far in PACT this

knowledge sharing has occurred "off line".  What went on behind the scenes to develop

this scenario, and is certainly not represented in computational form in PACT at all, was a

careful negotiation to ascertain the feasibility and advisability of this set of engineering

decisions.  All of the human engineers got together to discuss the ramifications of the larger

motor, determining for example that the motor housing would not have to be enlarged and

that the added weight of the new motor would not affect operation of the manipulator's

effector arms.  These findings were critical: enlarging the motor housing or changing the

dynamics of the arms would have required major changes in the rest of the manipulator

design.  The proposed change was allowed, but only because its effect on the existing

design was determined to be acceptable.  It is this process that we are bringing into the

computational framework via Cosmos.



8

In particular, Cosmos provides automated reasoning to support engineering negotiation.

This reasoning involves management of commitment  constraints, a subset of engineering

constraints that determine whether a particular component fits into a particular design.  The

commitment types for any particular domain  represent the constraints that are known to be

relevant in determining the implications of component descriptions on each other.  For

example, in a mechanical domain, physical linkages, spatial relationships, and functional

roles define commitments.  In an electrical domain, commitments are concerned with

connectivity, physical configuration, thermal, and radiation characteristics.  In software,

input/output, data access requirements, and control  relationships represent commitments

(for detailed examples, see [Mark] ).

Commitments define a concept of locality with respect to engineering change: when a

component description changes, the other components specified in its commitments are the

ones affected.  Commitment relationships thus isolate a subset of the design that needs to

be considered for a single negotiation. In Cosmos, to ensure that components meet

commitments, component descriptions are organized dynamically into a coherent

representational framework that represents the "current design" as it evolves.  This coherent

framework is the engineering model.  Cosmos represents the engineering model in Loom

[MacGregor], and uses Loom to perform subsumption and constraint propagation

reasoning over the engineering model to ensure that components meet each others'

commitments in the face of change.

Whenever a new engineering decision is proposed via one of the tools in the environment,

Cosmos (1) determines the scope of impact  of a decision in order to provide appropriate

context for the engineers involved in negotiating a change; (2) produces a visualization of

the scope of impact; and (3) presents this visualization to all of the stake holders  to give

them an explicit shared context for negotiation.

Cosmos assesses the impact of a proposed change via qualitative simulation [Forbus] on

the commitment relationships that include the changed element.   For example, engineers

may want to determine whether a change in gimbal mass will cause the stress on a strut to

exceed the maximum acceptable stress.  In general, Cosmos will not  have enough detail to

calculate the stress directly.  It will, however, know that the stress varies proportionately

with the mass and can thus determine whether the maximum acceptable stress level would

be affected by the change in mass, i.e., whether the stress level is within the scope of

impact of the proposed change in mass.
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This kind of reasoning results in the determination of the neighborhood of interrelated

engineering elements that are relevant to this particular decision, which defines the scope of

impact.  Cosmos produces a visualization of this scope of impact neighborhood in the form

of a "network browser" showing the relevant components and their interrelationships (see

Figure 6 below).

Cosmos shows this visualization to the engineers who proposed the change in order to

provide immediate feedback: for example, if the engineers specify a change that leads to

onerous commitments, they may wish to reconsider their proposal---one of the most

powerful reasons not to change a design (or to change it) is to make  it fit in with previous

decisions.

So far the scope of impact visualization has provided feedback to the original engineers

based on the current engineering model---but this model will change as a result of the

negotiation required to incorporate the proposed change.  To help manage this process of

change in a distributed setting,  Cosmos uses the scope of impact visualization to provide a

context for negotiation with other engineers.  Therefore, once the original engineers are

convinced that they actually want to propose the change, Cosmos presents the scope of

impact visualization to the other engineers whose components are  within the scope of

impact---the "stake holders."  Rather than reacting to the proposed change in isolation, all

of the parties involved share the same scope of impact visualization context for exploring

decisions.  As different engineering groups propose reactions to the original change,

Cosmos distributes the proposed updates to the shared context to all of the stake holders.

The scope of impact visualization  thus serves as a shared dynamic context in which all

stake holders make negotiation decisions.

Figure 2 depicts the architecture we have used for our Phase I implementation.  Two

engineers, a gimbal engineer and a layout engineer, are working on the design of a

spacecraft structure via their (very different) computer tools.  The tools are linked together

through the knowledge sharing infrastructure described in Section 2.  Tools are attached to

the infrastructure via "wrappers", which include translators between the tool's internal

language and the  KIF/KQML language of the infrastructure.   Tools exchange information

through their wrappers in terms of KIF/KQML messages.  These messages are

automatically routed to the tools of other engineers that have declared interest in the kind of

information found in the content part of the message (see [SHADE]).
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Cosmos is also part of the infrastructure, acting as a mediator [Wiederhold] for determining

information that tools should be interested in, beyond the interests they have declared1.

Cosmos examines all messages that suggest engineering changes (these are automatically

routed to Cosmos because Cosmos has declared interest in them).  Cosmos uses its

engineering model and commitment-based reasoning to determine the scope of the impact

of the change.  This scope of impact is then used to produce a visualization.  Finally, this

information is packaged into a KIF/KQML message, which is automatically routed to all of

the tools that have declared an interest in any of the elements of the scope of impact -- a

more complete set than those which had expressed interest in the original change message

itself.  This forms the set of stake holders who must be involved in the negotiation.  The

stake holders then negotiate on the basis of a shared context -- the visualized scope of

impact that they now share.  Cosmos monitors the ongoing negotiation, updating the

shared visualization as decisions are proposed and made.  All information is exchanged

using the message passing protocol.

One of the goals of Cosmos, along with the other elements of the infrastructure, is to allow

the inclusion of tools into the infrastructure with a minimum amount of work required on

the part of tool developers or user engineers.  The only additional burden added by Cosmos

is a simple I/O manager as part of the wrapper, used to manage interaction with the on-

screen visualization.

CCCCoooossssmmmmoooossssCCCCoooonnnntttteeeennnntttt
BBBBaaaasssseeeedddd    RRRRoooouuuutttteeeerrrr

CCCCoooossssmmmmoooossss    IIII////OOOO    
MMMMaaaannnnaaaaggggeeeerrrr

WWWWrrrraaaappppppppeeeerrrr possible
change

message

impact
analysis

IIII----DDDDEEEEAAAASSSS

GGGGEEEE    GGGGrrrraaaapppphhhhiiiicccc
EEEEddddiiiittttoooorrrr

TTTTrrrraaaannnnssssllllaaaattttoooorrrr

GGGGiiiimmmmbbbbaaaallll
EEEEnnnnggggiiiinnnneeeeeeeerrrr

LLLLaaaayyyyoooouuuutttt
EEEEnnnnggggiiiinnnneeeeeeeerrrr

Figure 2.  Cosmos Phase I Implementation Architecture

1A travel agent is a familiar example of a mediator, using his or her knowledge of travel "capabilities"
(routings, fares, packages, etc.) and client needs to provide clients with information that they were unaware
of, but should have in order to make their decisions.



11

4. MACE

The first real test domain for Cosmos has been an experimental spaceflight program, the

Mid-deck Active Control Experiment (MACE), scheduled to be flown on the Space Shuttle

mid-deck in 1994. MACE is a joint MIT / NASA / Lockheed research effort to investigate

problems common to flexible spacecraft in order to aid in the engineering of future

satellites.  Specifically, MACE will use active control to allow multiple payloads (e.g.,

multiple telescopes) to coexist on a single satellite bus structure.  Without active control,

when one of the telescopes receives a ground instruction to point to a new location, ensuing

vibrations in the bus structure caused by the moving telescope would significantly disrupt

the other telescopes.

The MACE engineering model maintained by Cosmos represents the components and

interrelationships defined in the current MACE design, including the current values for

engineering quantities (e.g., masses, forces, stresses, etc.) within the design.  All MACE

components and relationships are defined by one of the ontologies used by Cosmos. These

ontologies contain all of the engineering terms and their interrelationships known to

Cosmos.

Figure 3 shows a fragment of the MACE engineering model, and its relationship with (an

even smaller fragment of) the ontology of structures.  Strut1 is an element of the MACE

design that is a kind of cylindrical object.  By virtue of the definition of cylindrical object in

the structures ontology (fragment shown in bold), the MACE engineering model inherits a

set of interrelationships that define key engineering quantities like "strut stress".

Depending on the detail in which interrelationships have been modeled in the ontologies

available to Cosmos, engineering model links vary from actual equations to qualitative

relationships such as "directly linearly proportional", "directly non-linearly proportional",

or simply "related".  Note that the concepts in the ontologies are generic, and only have to

be modeled once to cover all designs within a specific engineering discipline.

The concepts in the MACE engineering model are specific to that design.   For example, the

MACE bus consists of a specific set of struts and gimbals; the stress on strut in the MACE

design is governed by an "acceptability constraint", which is in turn determined by a safety

factor, and so on.  Each of the terms in the model like strut, gimbal, and safety factor is

defined in a generic ontology, however the specific configuration of these terms, and

specific values of engineering quantities are specific to the MACE engineering model.  In
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fact, any real design will be characterized by a collection of engineering models over time,

since changes in the design lead to changes in the engineering model.  Cosmos determines

scope of impact based on the existing engineering model, and changes the model to reflect

agreed-upon engineering changes, in turn creating the next "existing" model.

Commitments are defined within the ontologies (since they are properties of the engineering

discipline), and are thus inherited by the engineering models. All the interrelationships

shown in Figure 3 are commitments.

strut1 out.
diameter

strut1 ins.
diameter

strut1
length

strut1 stress

strut1 end-pt
force

 outside
diameter

inside
diameter
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stress

 stress on
cylindrical object

cylindrical object

MACE strut1

end-point
force forcedimensions

linearly
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max. stress
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safety
factor

MACE
bus

MACE
gimbal1

MACE
gimbal1 mass
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F=ma

lin.
prop.

lin.
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inequality

Figure 3.  Fragments of the "structures" ontology and MACE engineering model

Relationships in the MACE engineering model are inherited from the ontology
of structures (shown in bold above).  Since "MACE strut1" is a cylindrical
object (the dark arrow indicates a subsumption relationship), all other
relationships are inherited (solid lines are "roles" or "slots"; dashed lines are
relationships between roles).

5. Example of Cosmos Interaction

In a scenario of Cosmos support, a gimbal engineer learns that the slew speed of the

MACE gimbals must be increased (a payload is mounted on the MACE bus structure by a
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gimbal, which is responsible for pointing the payload via "slew" and other commanded

motions).  To accomplish the faster slew speed, the gimbal engineer considers using a

different, larger inside rotor within the gimbal .   The engineer uses his tool (the IDEAS

solid modeling and structural analysis system) to select a new inside rotor and see if it will

do the job.    In the local world of the gimbal engineer, the problem is now solved.

However, because the gimbal is only one part of the larger MACE design, the gimbal

engineer must consider the impact of his decision on other engineers: The engineer must

choose a replacement rotor that minimizes impact on the rest of the design, in order to

facilitate acceptance of this engineering change.   That is, finding a rotor replacement that

fits in with the rest of the design is just as much part of the engineer's problem as achieving

greater slewing speed.

It is therefore in the engineer's interest to explore the impact of his decision (and perhaps

try alternatives) before actually proposing a change to the rest of the design team. The

engineer can use Cosmos to help him with this initial assessment of the impact of his

proposed change.  The engineer is constantly interacting with IDEAS, making "edit-level"

changes, running analyses, etc.  Cosmos only enters the picture when the engineer reaches

the stage of having made a provisional engineering decision, which he signals by

essentially saying "done" to the tool (the exact interaction is dependent on the tool, and is

monitored by the Cosmos I/O manager).  Cosmos then provides the impact analysis

automatically, as part of the infrastructure.  The engineer does not have to "call" Cosmos,

or learn any new commands.

When the engineer signals "done",  the Cosmos I/O manager tells the wrapper associated

with the IDEAS tool to format a possible change message that contains the engineering

parameters (gimbal mass, geometry, and dynamics) that have changed since the last "done"

signal.  This possible change  message is then broadcast over the infrastructure and

forwarded to Cosmos by the content-based router, since Cosmos has posted an interest in

all engineering change messages (see Figure 4).  Cosmos then examines the current MACE

engineering model to determine the scope of impact of this change.
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CCCCoooossssmmmmoooossssCCCCoooonnnntttteeeennnntttt
BBBBaaaasssseeeedddd    RRRRoooouuuutttteeeerrrr

IIII----DDDDEEEEAAAASSSS

ppppoooossssssssiiiibbbblllleeee
cccchhhhaaaannnnggggeeee

GGGGiiiimmmmbbbbaaaallll
EEEEnnnnggggiiiinnnneeeeeeeerrrr

Figure 4. Step 1: Gimbal engineer explores a possible engineering change

The gimbal engineer uses I-DEAS to define a possible engineering change.
Cosmos has posted an interest with the content-based router so that it will
receive notification of such changes and be able to provide impact analysis.

When Cosmos receives a possible change message, it creates a new context in which it can

reason about this change without affecting the agreed-upon engineering model.  Within this

new context, the engineering model is updated with the new values for the possible change.

In this case, the new larger rotor has caused a 10% increase in the gimbal mass value.

Cosmos explores the commitments relating "gimbal mass" to the rest of the engineering

model in order to identify the scope of impact within the model.  Some of these

commitments are shown in the model fragment of Figure 3.  For example, following one of

the commitments from gimbal mass, Cosmos uses qualitative sensitivity analysis to

determine that, given the F = ma proportionality relationship between gimbal mass and strut

end-point force, the strut end-point force quantity must increase by the same percentage the

mass has increased i.e., 10%.

Cosmos goes on to explore the commitment between strut end-point force and strut stress.

It determines that this value must also increase 10%, since strut stress is directly linearly

proportional to strut end-point force.  Next  it finds that strut stress is constrained to be less

than the maximum acceptable stress.  If the engineering model contains the actual values of

these quantities (along with their interrelationships, as shown here), Cosmos can determine

whether the "acceptability" constraint would be violated by this change.  Otherwise,

Cosmos flags it as a potentially violated constraint  (e.g., here the potential violation would

be that if the maximum acceptable stress is less than 10% of the previous stress value, the

acceptability condition would be violated). This commitment evaluation process

theoretically  continues until it "grounds out" in leaf nodes in the model.  But Cosmos

produces the scope of impact  for visualization a "page at a time", allowing commitment

evaluation to be a lazy background process.
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iiiimmmmppppaaaacccctttt
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Figure 5.  Step 2: Cosmos provides scope of impact

Cosmos provides the scope of impact of the possible change to the gimbal
engineer, who decides to try a different alternative.

"Pages" are defined by proximity to violated or potentially violated constraints2.  When

Cosmos computes a page's worth of commitment evaluation information, it packages the

information as an impact analysis message for routing back to the gimbal engineer (see

Figure 5).  The Cosmos I/O manager for the gimbal engineer's IDEAS tool then produces

the visualization for the engineer (see Figure 6).  This visualization gives the engineer

immediate visual feedback on the ramifications of the change: each commitment must be

met, which means that the designated other parts of the design must be made compatible

with the change in gimbal mass.

max. stress
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strut1 end-pt
force

strut1 stress
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diameter

strut1
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strut1
material
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Figure 6.  Visualization provided by Cosmos

Links represent constraints; the dashed link (colored red on the actual Cosmos
display) represents the constraint violation or potential violation.

2The definition of proximity here is somewhat complicated, as it depends on the characteristics of the
engineering model in Loom (number of roles per concept, etc.), the fact that not all Loom concepts and
roles are visualized for the user (only those with specific relationships to pre-marked "visualizable"
ontology elements are visualized), and user interface ideas of what size diagram is effectively visualizable.
In any case, paging here is a computational convenience, not a theoretical statement.
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The visualization shows the engineer the context for negotiation with other engineers: a

constraint has been violated, and one or more of the design elements shown in the

visualization must be changed.  Some of these elements are under the control of the gimbal

engineer (e.g., the gimbal mass), while others are not (e.g., the strut diameters).  The

gimbal engineer can thus see the context in which the negotiation will take place, and make

a judgement as to whether the change is worth pursuing, or whether an alternative should

be tried.  This page represents only one aspect of the context; the engineer may have to look

at several pages to get the full picture (for simplicity, only this page will be discussed here).

In this case, the gimbal engineer decides from the feedback that other engineers will have a

hard time accommodating the change in gimbal mass.  He therefore uses IDEAS to explore

an alternative: choosing a different inside rotor, one that is not optimal for his design, but is

less massive.  When he signals "done", the Cosmos I/O manager once again tells the

IDEAS wrapper to send a possible change message, which is received by Cosmos.

Cosmos creates a new context, evaluates commitments, and sends back a new visualization

page  (see Figure 7).
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Figure 7.  Step 3: Engineer tries again

Gimbal engineer tries an alternative possible change and receives a new
visualization.

This process of trying possible changes and receiving visualization feedback may go

through several iterations before the gimbal engineer believes that a given alternative meets

the required functionality and will not be too onerous (or seems to be the least onerous) for

other engineers to deal with.  In this case, this occurs on the second iteration.  The gimbal

engineer has been using the negotiation context provided by Cosmos to determine how

other engineers might react to his suggested change.  Now he must actually negotiate that

with the other engineers affected by this change, the stake holders.

The advantage of the Cosmos approach is that along with the possible change, the gimbal

engineer can share with the stake holders the context he has been using to explore the
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ramifications of that change.  When the gimbal engineer decides to actually bring the other

stake holders into the negotiation, he signals through the IDEAS tool that he is ready to

actually propose the change.  The Cosmos I/O manager then tells the IDEAS wrapper to

create a proposed change message, which is again received by Cosmos (see Figure 8). This

time Cosmos will send the proposed change and scope of impact pages to all of the stake

holders, not just the gimbal engineer.  Cosmos and the content-based router determine the

stake holders automatically: the scope of impact shows which MACE elements are affected

by the change, and the content-based router knows the interests of the various MACE

engineers (based on previously collected subscription information, see [SHADE]).

Cosmos  therefore send the proposed change, in context, to all of the stake holders.

Together this information is used to make sure that all of the affected engineers receive the

proposed change and the relevant scope of impact pages.

The scope of impact can now be used by the other engineers as a context for agreeing with

the change (if it has only limited effects on their part of the design), or disagreeing with it

(e.g., if it would require them to change a critical component).  They can also agree with

the change contingent on a further change being made.
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Figure 8.  Step 4: Gimbal engineer actually proposes change

The gimbal engineer is satisfied that the second alternative is a viable option,
and actually proposes it.  Cosmos and the content-based router provide the scope
of impact to all stake holders.

In this example,  the only other stake holders are the layout engineers (see Figure 8).

Given the scope of impact visualization in Figure 3, the layout engineers can quickly

determine the negotiation variables: they have control over the strut inside diameter, strut

outside diameter, and strut length.  If the maximum strut stress is violated, they  can

propose a change to one or more of these engineering elements, or simply resist the

proposed change.  In any case, negotiation with respect to this scope of impact between the

gimbal engineer and the layout engineers will continue until a resolution is reached, with
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Cosmos dynamically updating the scope of impact visualizations to reflect proposed

changes.  In Figure 9, the layout engineers have decided to change the inside diameter of

strut1, which will allow the strut to handle the somewhat higher gimbal mass within

acceptable stress limits.  Cosmos distributes this new information to all stake holders: the

scope of impact that they all share involves two linked change proposals.
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Figure 9.  Step 5: Change is conditionally accepted

The layout engineer examines the proposed change via the scope of impact and
proposes a change in his part of the design that will accommodate the proposed
change.  Cosmos and the content-based router inform all stake holders of the
new scope of impact with the now linked change proposals.

In this case, the layout engineers' proposal is acceptable to the gimbal engineer, the only

other stake holder, and the negotiation is complete.  In general, if one or more of the

stakeholders were not satisfied with this change, the negotiation would continue.

Furthermore, new stake holders might be brought in if proposed changes start affecting

other parts of the design.  The complexity of engineering negotiation is inherent: Cosmos

provides structure, automatic discovery and inclusion of stake holders, and automatic

sharing of negotiation context.

5.  Reactions

The Phase I Cosmos implementation has been demonstrated to a wide audience.  The

feedback from the engineering community has been quite positive with respect to the key

elements of the Cosmos approach: engineers being able to experiment with alternatives in

private before formally proposing the change; responsibility for involving stake holders

being undertaken by the computational environment; and automatic sharing of visualized

negotiation context being incorporated into the everyday engineering process.  Large

project engineers who have seen Cosmos have emphasized the role that higher level system

engineers take during engineering change negotiations.  In this regard, the scope of impact
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visualization can also provide context for the system engineers to make informed decisions.

In fact, the scope of impact visualization can serve as the major form of communication

between component engineers and system engineers, supplementing (or, better, replacing)

formal engineering change notice procedures.

Cosmos has also been of interest to the part of the computer science community that is

addressing the integration of heterogeneous software tools in distributed network

environments.  In particular, Cosmos has provided an opportunity to test knowledge level

integration concepts such as KIF, KQML, and content-based routing.   Our finding has

been that Cosmos fits in well as a mediator in the computational infrastructure.  The

message-based interaction paradigm,  the KIF/KQML languages, and the facilities of the

content-based router have proven adequate for initial Cosmos needs, though the Cosmos

Phase I implementation led to several refinements and enhancements of this infrastructure

technology.

Finally, Cosmos Phase I has shown the need to expand and improve our representation of

engineering knowledge and the reasoning mechanisms that work on it.  For example, in the

Phase I implementation we restricted our representation of constraints to allow

straightforward modeling of  MACE engineering knowledge with existing technology. It is

clear from our experience and the demands of working engineers that we will have to

provide a more in-depth constraint representation and reasoning capability.  Also, our

current ontologies and model cover only a small portion of the total MACE design.  These

must be significantly expanded in order to test the Cosmos concept at real engineering

scale.

We are using our experience with creating and demonstrating the Cosmos Phase I

implementation to inform the design of our Phase II system.

6.  Cosmos Phase II

For Cosmos Phase II we are focusing on demonstrating that the Cosmos concept will work

at  the scale required to support large engineering projects.   The major areas of advance

over Phase I will  include: more powerful commitment reasoning, more well-founded

ontologies, more informative visualizations of the scope of impact, and a higher bandwidth

communication channel among engineering change proposers and stake holders.
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A key area under current investigation is the use of a more powerful commitment reasoning

strategy.  Our underlying knowledge representation system Loom gives us access to a

powerful classification mechanism as well as to more standard production rules and other

reasoning mechanisms.  For the Phase I system, all commitments were represented in

terms of production rules due to limitations in the Loom's constraint representation and

reasoning capabilities.  While production rules were adequate for Phase I, it is evident to us

that the approach will not scale up to the thousands of constraints that must be represented

to capture realistically large engineering models.  For Phase II, we are working with the

Loom implementers on a declarative representation of commitments that can take advantage

of the Loom classifier to propagate constraints and detect violations.

Another area requiring considerable advance to enable scale-up is the use of externally

produced ontologies.  The Cosmos project is not intended to be a producer of engineering

ontologies, but rather a user of engineering ontologies.  For Phase I, we collaborated

minimally with ontology researchers to develop an ontology of MACE concepts and their

interrelationships.  For Phase II, we will be exploiting other engineering ontologies to a

greater extent.  For example, the engineering math ontology "units-and-dimensions",

developed under the SHADE project [SHADE], is a likely candidate.  Cosmos Phase II

will in fact be a good test of the adequacy of the evolving technology of "portable

ontologies" (see [Gruber]).

We also plan to improve the scope of impact visualizations that are presented to engineers.

The current visualization presents a tree of commitments with each leaf node itself

potentially being expandable into a sub-tree.  While this visualization presents much of the

information that engineers need, feedback from the Phase I implementation has shown that

it is not adequate.  First, engineers have proposed presenting a visualization of the degree

of violation; e.g., telling the engineer not just that the stress on strut1 now exceeds the

maximum allowable, but showing the engineer a visualization of how much the stress is

over the limit.  A second visualization extension involves merging or simultaneously

displaying more than one scope of impact pages.  Since these pages are generated from a

common engineering change, there is often a significant degree of common information.  If

we can determine perspicuous visualization of this multi-dimensional information,

engineers will be able to much more rapidly assess the impact of a change in a large highly

interdependent design.  Also, we have some human factors work to do in terms of shapes,

colors, and graph drawing algorithms.
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A final important area under current investigation is increasing the bandwidth of interaction

among engineers negotiating over a scope of impact.  In the Phase I system, an engineer

would propose a change that would be forwarded to all other stake holders.  The stake

holders have a limited set of actions open to them to respond to the proposed change: they

can accept the change, reject the change, or accept the change contingent upon an additional

engineering modification taking place.  Further, while the original engineer views

potentially several different scopes of impact in response to several alternative changes, the

stake holders only view the scope of impact selected by the original engineer as the "best".

For Phase II, this shared negotiation context will be expanded significantly to include all

alternatives.  One important motivator for this expanded scope of impact implementation is

that on large projects, it is very difficult for negotiation to occur at the same time for all

stake holders.  Once an engineer forwards scope of impact information to the stake holders,

those other engineers should be able to navigate the scope of impact information,

experiment with changes that must be made in addition to the original change, and receive

Cosmos impact analysis information on the new changes.  All of this interaction must take

place in a shared environment -- that is, engineers must have navigation-level access to the

alternatives and rationale of their fellow stake holders in the negotiation.
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