
Recognition Algorithms for the Loom Classi�er�

Robert M. MacGregor and David Brill
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

macgregor@isi.edu, brill@isi.edu

Abstract

Most of today's terminological representation sys-
tems implement hybrid reasoning architectures
wherein a concept classi�er is employed to reason
about concept de�nitions, and a separate recog-
nizer is invoked to compute instantiation relations
between concepts and instances. Whereas most
of the existing recognizer algorithms designed to
maximally exploit the reasoning supplied by the
concept classi�er, Loom has experimented with
recognition strategies that place less emphasis on
the classi�er, and rely more on the abilities of
Loom's backward chaining query facility. This
paper presents the results of experiments that test
the performance of the Loom algorithms. These
results suggest that, at least for some applica-
tions, the Loom approach to recognition is likely
to outperform the classical approach. They also
indicate that for some applications, much better
performance can be achieved by eliminating the
recognizer entirely, in favor of a purely backward
chaining architecture. We conclude that no single
recognition algorithm or strategy is best for all
applications, and that an architecture that o�ers
a choice of inference modes is likely to be more
useful than one that o�ers only a single style of
reasoning.

Introduction

Loom (MacGregor and Burstein, 1991; MacGregor,
1991b) belongs to the family of terminological repre-
sentation systems descended from the language KL-

ONE (Brachman and Schmolze, 1985). A character-
istic feature of these systems is their ability to reason
with de�nitional and descriptive knowledge. A spe-
cialized reasoner called a classi�er enables these sys-
tems to compute subsumption relationships between
de�nitions (to determine when one de�nition implies

�This research was sponsored by the Defense Advanced
Research Projects Agency under contract MDA903-87-C-
0641.

another) and to test the internal consistency of de�ni-
tions and constraints. The kind of reasoning obtain-
able with a classi�er has proved to be useful in a wide
variety of applications (Patel-Schneider et al., 1990).
A recognizer is a reasoner that complements the

abilities of a classi�er. Recognition (also called \re-
alization" (Nebel, 1990)) refers to a process that com-
putes instantiation relationships between instances and
concepts in a knowledge base. An instantiation rela-
tionship holds between an instance and a concept if
the instance satis�es (belongs to) that concept. We
have observed that Loom applications use the recog-
nizer much more than they do the classi�er (i.e., they
spend more of their time reasoning about instances
than about de�nitions) and we believe that this trait
extends as well to applications based on other termi-
nological representation systems. Thus, it is of critical
importance that the recognition process be as e�cient
as possible.
Most classi�er-based representation systems treat

recognition as a variation of concept classi�cation, and
implement recognizers that rely on the classi�er to per-
form most of the necessary inferences. Loom is per-
haps the only terminological representation system to
experiment with recognition algorithms that di�er sig-
ni�cantly fromwhat has become the standard or classi-
cal approach to building a recognizer. In this paper, we
present the results of experiments that suggest that, for
at least some applications, the Loom algorithms per-
form better than the classical algorithm. Loom also
supports an alternative mode for computing instanti-
ation relationships that substitutes a backward chain-
ing prover in place of the recognizer. This backward
chaining mode has proven to be much more e�cient for
some applications. Thus, the adoption of more 
exible
(and more complex) recognition algorithms has lead to
improved performance for some Loom applications.

The Classical Approach to Recognition

Terminological representation systems partition their
knowledge bases into a terminological component
(TBox) and an assertional component (ABox) (Mac-
Gregor, 1990; Nebel and von Luck, 1988). The TBox



Feature Interpretation

all(R,C) �x: 8y: R(x; y)! C(y)
atLeast(k,R) �x: 9 k distinct yi ^i R(x; yi)
atMost(k,R) �x: 6 9 k + 1 distinct yi ^i R(x; yi)
filledBy(R,f) �x: R(x; f)
sameAs(R1,R2) �x: 8y: R1(x; y)$ R2(x; y)

Table 1: Some Loom Features

contains a set of descriptions (one-variable lambda ex-
pressions) organized into a subsumption hierarchy. A
named description is called a concept. The ABox con-
tains facts about individuals. In Loom a fact is rep-
resented either as an assertion that an instance (in-
dividual) satis�es a particular description (e.g., \The
individual Fred satis�es the concept Person.") or as an
assertion that a role relates two individuals (e.g., \50
is a �ller of the role `age of Fred'."). A knowledge base
can also contain constraint axioms of the form \de-
scription1 implies description2" having the meaning
\Instances that satisfy description1 necessarily satisfy
description2."
A description is either atomic or composite. We call

atomic descriptions features|Table 1 lists some Loom
features. A composite description consists of a con-
junction of two or more features.1 An instance satis�es
a description if and only if it satis�es each of its fea-
ture(s). The Loom recognizer �nds an instantiation
relationship between an instance I and a concept C by
proving that I satis�es each of the features of C.
Example 1. Suppose we have concepts A and B, role
relations R and S, and an individual I with de�nitions
and assertions as follows:

concept A = atMost(1,S).
concept B = atLeast(1,R)

and atMost(1,S).
assert A(I), R(I,3), R(I,4).

The fact R(I,3) implies that I satis�es the feature
atLeast(1,R), and the fact A(I) implies that I satis-
�es the feature atMost(1,S). Hence, I is an instance
of the concept B.
A classi�er computes subsumption relationships be-

tween a new description and the already classi�ed de-
scriptions in a description hierarchy. The �nal step in
the classi�cation process is to link the newly-classi�ed
description into the hierarchy. A description hierar-
chy is constructed by starting with an empty network,
and classifying descriptions one at a time until all of
them have found their place relative to each other in
the hierarchy. In Example 1 above, the subsumption
test invoked by the classi�er would determine that A
subsumes (is more general than) B. Classifying A �rst

1LOOM descriptions can also contain disjunctive ex-
pressions, which this paper ignores for the sake of
simplicity.

and then B or vice-versa would result in the same de-
scription hierarchy, with A above B.
The classical approach to classifying (recognizing)

instances utilizes an abstraction/classi�cation (A/C)
strategy that relies on the classi�er machinery to com-
pute instantiation relationships (Kindermann, 1990;
Quantz and Kindermann, 1990; Nebel, 1990). Given
an instance I, the A/C algorithm operates by (i) com-
puting a description AI representing an abstraction of
I, and (ii) classifying AI . I is an instance of each con-
cept that subsumes AI . For example, the description

atLeast(2,R) and filledBy(R,3)
and filledBy(R,4) and atMost(1,S)

represents a possible abstraction of the individual I in
Example 1. This abstraction is subsumed by concepts
A and B.
The abstract description of an instance has the po-

tential to be much larger (take up more space) than
the originally asserted facts about that instance. Some
classical classi�ers are turning to an incremental ap-
proach wherein successively more detailed partial ab-
stractions of an instance are generated during a recog-
nition cycle (Kindermann, 1991). However, because
of concerns with possible performance problems, the
Loom choice is to implement a completely di�erent
recognition algorithm.
We see two potential areas where performance of the

classic A/C algorithm may deteriorate:

(1a) Instances in a knowledge base are typically pair-
wise distinguishable. Hence, their abstractions, if
su�ciently detailed, will also be pairwise distinct.
Hence, the number of descriptions in a system that
utilizes A/C recognition may grow to be propor-
tional to the number of instances. We expect that
for knowledge bases containing thousands or tens of
thousands of individuals, the A/C strategy will cause
the size of the TBox to become unmanageably large.

(1b) With the A/C algorithm, every update to an in-
stance necessitates generating a new abstraction.
Unless old abstractions are deleted, frequent updates
may cause the cumulative number of abstractions in
the net to be much larger than \just" the number of
instances.2

(2) In the classical approach to recognition, all instanti-
ation relationships are continuously cached and kept
up to date. Thus, every update to an instance neces-
sitates recomputing instantiation relationships be-
tween the instance and every description that it sat-
is�es. As the size of a net grows, this computation
becomes increasingly expensive.

To mitigate performance problems (1a) and (1b),
Loom has experimented with recognition strategies
designed to reduce the number of additional abstract
descriptions generated during the recognition process.

2A strategy that deletes each \old" abstraction risks
having to generate that same abstraction over and over.



0

10

20

30

40

50

60

Trial Number

S
ec

o
n

d
s

1 2 3 4 5

Figure 1: Recognition Speed over 5 Iterations

Section presents Loom's \query-based" recognition
strategy, wherein calls to a backward chaining query
facility are substituted in place of searches for features
within an instance's abstract description. To cope
with problem (2), Loom supports an inference mode
wherein instantiation relationships are computed only
on demand; few or none of the instantiation relation-
ships for an instance are cached. This is discussed in
section .
Before looking at experiments that compare di�er-

ent recognition algorithms, we �rst present the results
of an experiment performed using a single recognizer
(in this case, the recognizer implemented for Loom
version 1.4). Figure 1 shows results the using a Loom-
based application called DRAMA (Harp et al., 1991).
DRAMA is a system that provides intelligent assis-
tance to analysts of logistics databases. The portion
of DRAMA that we used in our tests analyzes data
for anomolies, such as inconsistencies and noteworthy
changes, and logs and categorizes any data anomolies
it encounters. In this experiment, the knowledge base
was initially loaded with 672 concept de�nitions, 481
relation de�nitions, and 677 constraint axioms. We
made �ve trials over the same sequence of instance cre-
ations and updates (25 instances were created), clear-
ing the ABox portion of the knowledge base between
trials.
Observe that the performance of recognizer improves

signi�cantly on the second and following trials. We at-
tribute the improved performance of the 1.4 recognizer
to the fact that the recognizer generates signi�cantly
fewer augmentations to the description network during
the second and subsequent trials. We have observed
this \learning" e�ect in a variety of applications.3 Be-
cause of this e�ect, the performance �gures we present

3However, we have also observed situations where an
excess of descriptions, created by prior invocations of the
recognizer, can cause system performance to degrade.

in the sequel include timings for repeated trials over
the same data, to provide indications of Loom's be-
havior at both ends of the performance spectrum.

Query-based Recognition
The Loom recognition algorithm is designed to min-
imize the number of new abstractions generated as a
by-product of the recognition cycle. To compare an in-
stance I with a description D, the A/C algorithm gen-
erates an abstract description AI of I, and then com-
pares AI with D using a standard subsumption algo-
rithm. The Loom strategy is to implement a special-
ized subsumption test that allows it to directly com-
pare I against D, thus avoiding the necessity for gen-
erating an abstract description. Further details of the
Loom recognition algorithm can be found in (MacGre-
gor, 1988) and (MacGregor, 1991a).
Query-based Recognition|an algorithm for com-
puting the set of concepts satis�ed by an instance I:

(i) Inherit all features from concepts that I satis�es by
direct assertion, and inherit all features implied by
those concepts via constraint axioms.

(ii) Compute a normalized set of features representing
the uni�cation of the set of inherited features.

(iii) Mark all directly asserted concepts; mark all features
in the normalized set; and recursively mark the su-
periors of marked descriptions.

(iv) Classify I substituting the query based satisfaction
test described below in place of the classical sub-
sumption test. Mark each newly satis�ed descrip-
tion.

(v) Inherit all features implied by the most speci�c de-
scriptions that I has been proved to satisfy in step
(iv).

(vi) Repeat steps (ii) through (v) until closure is
achieved.

Query-based Satisfaction Test (assumes concepts
and features have been marked prior to the test):
Instance I satis�es a concept C if I satis�es all

unmarked features of C. Iterate over the unmarked
features, and execute a query for each one to test
its satisfaction by I. For example, if the feature is
atLeast(k,R), then retrieve the �llers of the role \R
of I", count them, and return true if the sum is at least
k. If the feature is atMost(k,R), then return true if
the role \R of I" is closed and if the cardinality of the
set of �llers of that role is at most k. If the feature is
all(R,B), then return true if the role \R of I" is closed
and if each �ller of that role satis�es the concept B.
Let us apply query-based recognition to the instance

in Example 1. In step (i) instance I inherits the fea-
ture atMost(1,S) from the concept A. The normalized
set computed in step (ii) is just the singleton set con-
taining that feature. In step (iii) we mark the concept
A and the feature atMost(1,S). In step (iv) we visit
the unmarked concept B, and test for satisfaction of its



unmarked features|in this case, we test the feature
atLeast(1,R). The feature satisfaction test involves
retrieving the �ller set (f3,4g) of the role \R of I",
computing the cardinality (2 in this case), noting that
2 is at least 1, and returning true. We have proved
that I satis�es D so we mark it. In step (iv) we inherit
two features from B. Repeating steps (ii) through (v)
reveals no new instantiation relationships for I, so the
algorithm terminates.
A key di�erence between query-based recognition

and the abstraction/classi�cation strategy is that the
former algorithm tends to generate fewer new features.
For example, in performing recognition for instance I
in Example 1, the A/C algorithm generates the feature
atLeast(2,R) as a part of the abstraction of I, while
the query-based algorithm generates no new features.
We now discuss an extension to the query-based

recognition algorithm that was implemented starting
with version 1.4 of Loom. In versions up through
Loom 1.3, the set of instantiation relationships for
each recognized instance was cached by recording a
list of the most speci�c descriptions satis�ed by that
instance. This list is called the \type" of the instance.
In Example 1, the type of I is the singleton list con-
taining B, (concept B is more speci�c than concept A).
Starting with version 1.4, we changed the recognition
algorithm so that whenever the type of an instance
(computed at the end of step (iv)) contains more than
one description, a new description is created repre-
senting the conjunction of the descriptions in that in-
stance's type. This new description then replaces the
list of descriptions. Thus, the Loom 1.4 recognizer
occasionally generates new partial abstractions of in-
stances, and hence bears a greater resemblance to the
classical A/C recognizer than does its predecessor.
Why did we, as Loom implementors, make this

change, given that generating new abstractions tends
to slow things down? In a Loom-based parsing appli-
cation (Kasper, 1989) we observed that uni�cation op-
erations over the same sets of descriptions were being
performed repeatedly during step (ii) of the recognition
cycle (see (MacGregor, 1991b) for a discussion of de-
scription uni�cation). Creation of a new description D
representing the conjunction of descriptions in step (iv)
has the e�ect of caching the uni�cation operation for
that set of descriptions, because the Loom data struc-
ture representing D stores within it the uni�cation of
all features inherited (or implied by) D. The creation
of these additional conjunction descriptions can have
the e�ect of increasing the likelihood of triggering an
optimization in step (ii) wherein the uni�cation opera-
tion is eliminated whenever all inherited features derive
from a single description.
When we modi�ed the 1.4 recognizer to generate

these additional conjunctive descriptions, we observed
speed-ups of up to 20 percent in the parsing applica-
tion. Unfortunately, we observed an opposite e�ect
when we tested the e�ects of this modi�cation on the

0

10

20

30

40

50

60

Trial Number

S
ec

o
n

d
s

1 2 3 4 5

LOOM 1.3 LOOM 1.4.1

Figure 2: 1.3 Recognizer vs. 1.4 Recognizer

DRAMA application. As illustrated in Figure 2, the ef-
fect of generating additional descriptions was a degra-
dation in performance of around 30 percent. This is
due primarily to the fact that the 1.4 recognizer gen-
erates 83 new descriptions during the �rst trial, while
the 1.3 recognizer generates only 6 new descriptions.
However, the degradation persists in the second and
subsequent trials, when neither version generates a sig-
ni�cant number of new descriptions. In the DRAMA

application we found a large variation across the di�er-
ent ABox instances created during the test run, caus-
ing the leverage derived from caching uni�cations to be
low. Hence, the 1.4 recognizer ran more slowly because
it had to wade through a larger number of descriptions
in the hierarchy. We conjecture that the performance
of DRAMA using a fully classical recognizer would be
even worse than that exhibited by the version 1.4 rec-
ognizer.

Backward Chaining Instantiation Tests

Loom's query-based recognizer algorithm is designed
to address performance problems (1a) and (1b) above,
which are concerned with the creation of excessive
numbers of descriptions during recognition. The re-
sults in Figure 2 indicate that for some applications,
these concerns are real. However, the query-based
recognition algorithmdescribed above does not address
performance problem (2). We addressed that problem
by implementing a purely backward chaining algorithm
for computing instantiation relationships between in-
stances and descriptions. Because the query part of
the Loom recognition algorithm is itself a backward
chainer, construction of the new algorithm was much
simpler than would have been the case if we had orig-
inally implemented a classical recognizer.
Figure 3 shows the results when the DRAMA appli-



0

10

20

30

40

50

60

Trial Number

S
ec

o
n

d
s

1 2 3 4 5

LOOM 1.4.1 LOOM 1.4.1 Accel.

Figure 3: Accelerated vs. Non-accelerated Recognition

cation was run in an accelerated mode where the per-
centage of concepts for which instantiation relation-
ships were computed by the recognizer was reduced
from 79 percent to 36 percent. Computation of the
other 64 percent of the instantiation relationships was
performed (only on demand) by the backward chain-
ing facility. We observed a decrease of between 46 and
72 percent in the total amount of time spent comput-
ing instantiation relationships. Future modi�cations
to Loom should enable us to completely eliminate
the use of the recognizer for the DRAMA application,
hopefully resulting in further improvements in that ap-
plication's performance.

Given the positive results obtained with the accel-
erated mode, why don't we run all Loom applications
in that mode? The answer is that inference using the
Loom backward chainer is strictly weaker than infer-
ences obtained using the Loom recognizer, because the
backward chainer does not implement an analogue of
the constraint propagation (Nebel and von Luck, 1988;
Nebel, 1990) process that is interleaved between invo-
cations of the recognition cycle. Constraint propaga-
tion involves propagating the e�ects of features satis-
�ed by an instance to adjacent instances in the ABox.
For example, suppose a knowledge base contains the
axiom

A implies all(R,B)
where A and B are concepts, and R is a role, and sup-
pose the Loom recognizer proves that an instance I
satis�es A. I will then inherit the feature all(R,B).
During the next constraint propagation phase, the im-
plication implicit in that feature is used as the basis for
inferring that all �llers of the role \R of I" necessarily
satisfy B, i.e., the constraint of satisfying B propagates
to each of the �ller instances.

A backward chaining procedure for evaluating the

above axiom would look as follows: \To prove that an
instance x satis�es B, try to prove that some �ller of
the role `(inverse of R) of x' satis�es A." In our estima-
tion, extending the capabilities of the backward chainer
to include inferences of this sort would be likely to
signi�cantly degrade its performance, possibly negat-
ing its utility. Instead, Loom has made the follow-
ing architectural decision: \An axiom of the form `de-
scription1 implies description2 ' can be applied dur-
ing backward chaining inference only in the case that
description2 is a concept." In e�ect, during back-
ward chaining Loom utilizes only those axioms that
are syntactic analogues of Horn clauses. Thus, for ex-
ample, the axiom \all(R,B) implies A" would be
applicable during backward chaining, but the axiom
\A implies all(R,B)" would not.
Other classes of constraint propagation that are ap-

plied during recognition, but not during backward
chaining, include merging pairs of instances that are
inferred to be equivalent, and generating skolem in-
dividuals to �ll roles in cases where a role �ller is
known to exist, but where the identify of the �ller is
not known. Some Loom applications, notably, natu-
ral language parsing, explicitly depend on this kind of
constraint propagation (Kasper, 1989)|these applica-
tions cannot pro�t from the accelerated mode. The
DRAMA application provides an existence proof of a
real application that can execute correctly (and more
e�ciently) using the weakened form of inference pro-
vided by Loom's backward chaining facility.

Discussion and Conclusions

One characteristic that di�erentiates the recognizer al-
gorithms we have considered is the number of abstract
descriptions that they generate as a side-e�ect of recog-
nition. The 1.3 recognizer generates relatively few, the
classical algorithm generates relatively many, and the
1.4 recognizer lies somewhere in between. The instru-
mentation we performed on our algorithms suggests
that when 1.3 outperformed 1.4, the di�erence in speed
was due to the fact that 1.3 generated fewer abstract
descriptions. Hence, while the jury is still out as to
whether 1.3 or 1.4 is the better all around performer,
we interpret our tests as casting serious doubt as to the
viability of a full-classical recognizer. However, the re-
sults of our experiments should be regarded as sugges-
tive rather than as de�nitive. It is clear that we could
have formulated a test application that would produce
very di�erent (i.e., opposite) results. The DRAMA ap-
plication we used has the virtue that it is both real and
non-trivial.
With respect to modes of inference, we observe that

no single inference strategy can deliver acceptable per-
formance across a spectrum of domain applications.
This lesson is of course no surprise to AI practitioners.
In many reasoning systems inference is controlled by
explicitly marking rules as either forward or backward
chaining. We consider embedding control information



within individual rules to be an ultimately bankrupt
approach to performance enhancement, for at least two
reasons: First, we believe that the task of tuning such
rules will become increasingly untenable as the size of
rule bases increases. Second, we believe that it will
eventually become commonplace that a rule base will
be shared by two or more applications that need to
apply di�erent modes of inference to that same set of
rules. In Loom, the application chooses which mode
of inference is most suitable. Thus, for example, a
Loom-based diagnosis system might choose to run in
backward chaining mode, while a natural language ex-
planation system running against the same rule base
might choose to invoke the recognizer to assist its own
reasoning processes.
The most general conclusion indicated by our exper-

iments is that complex, multi-modal classi�er architec-
tures appear to be faster than simple (more elegant)
architectures, at least for uniprocessor-based systems.
This is basically a negative result, since it increases
our estimation of the di�culty involved in building a
knowledge representation system that is both general
purpose and e�cient.

Acknowledgement

The authors wish to thank Tom Russ for his help
in producing the graphs used in this paper, and Craig
Knoblock and Bill Swartout for their criticisms of an
earlier draft of this paper.

References
Brachman, R.J. and Schmolze, J.G. 1985. An
overview of the KL-ONE knowledge representation
system. Cognitive Science 171{216.

Harp, B.; Aberg, P.; Neches, R.; and Szekely, P. 1991.
DRAMA: An application of a logistics shell. In Pro-
ceedings of the Annual Conference on Arti�cial Intel-
ligence Applications for Military Logistics, Williams-
burg, Virginia. American Defense Preparedness Asso-
ciation. 146{151.

Kasper, Robert 1989. Uni�cation and classi�cation:
An experiment in information-based parsing. In Pro-
ceedings of the International Workshop on Parsing
Technologies, Pittsburg, PA.

Kindermann, Carsten 1990. Class instances in a
terminological framework|an experience report. In
Marburger, H., editor 1990, GWAI-90. 14th German
Workshop on Arti�cial Intelligence, Berlin, Germany.
Springer-Verlag. 48{57.

Kindermann, Carsten 1991. Personal communication.

MacGregor, Robert and Burstein, Mark H. 1991. Us-
ing a description classi�er to enhance knowledge rep-
resentation. IEEE Expert 6(3):41{46.

MacGregor, Robert 1988. A deductive pattern
matcher. In Proceedings of AAAI-88, The National
Conference on Arti�cial Intelligence, St. Paul, MINN.
AAAI. 403{408.

MacGregor, Robert 1990. The evolving technology
of classi�cation-based knowledge representation sys-
tems. In Sowa, John, editor 1990, Principles of Se-
mantic Networks: Explorations in the Representation
of Knowledge. Morgan-Kaufman. chapter 13.

MacGregor, Robert 1991a. Inside the LOOM descrip-
tion classi�er. SIGART Bulletin 2(3):88{92.

MacGregor, Robert 1991b. Using a description clas-
si�er to enhance deductive inference. In Proceeding
Seventh IEEE Conference on AI Applications, Miami,
Florida. IEEE. 141{147.

Nebel, Bernhard and von Luck, Kai 1988. Hybrid rea-
soning in BACK. Methodologies for Intelligent Sys-
tems 3:260{269.

Nebel, Bernhard 1990. Reasoning and Revision in
Hybrid Representation Systems, volume 422 of Lec-
ture Notes in Arti�cial Intelligence. Springer-Verlag,
Berlin, Germany.

Patel-Schneider, P.F.; Owsnicki-Klewe, B.; Kobsa,
A.; Guarino, N.; MacGregor, R.; Mark, W.S.; McGui-
ness, D; Nebel, B.; Schmiedel, A.; and Yen, J. 1990.
Term subsumption languages in knowledge represen-
tation. The AI Magazine 11(2):16{23.

Quantz, Joachim and Kindermann, Carsten 1990. Im-
plementation of the BACK system version 4. KIT
Report 78, Department of Computer Science, Tech-
nische Universitaat Berlin, Berlin, Germany.


