MACHINE MODELING
IN
LOOM

by

David Wilczynski
Thomas A. Lipkis
Pacific Software Solutions
1911A Ernest Ave.
Redondo Beach, CA 90278
(310)372-0333

October 20, 1993



I.INTRODUCTION 3

A. Overview 3
B. Loom 3
C. Automation Intelligence 4
Il. THE MODEL 4
A. Motivation 4
B. The Definitions - Concepts and Relations 4
C. The Extensions - Instances 7
D. Queries and Retrieval 8
lll. THE VALUE OF THE MODEL 9
A. Inheritance and Specialization 9
B. Knowledge Base vs. Data Base 9
IV. CONCLUSION 10
V. APPENDIX 1 - THE MODEL IN LOOM 11
VI. APPENDIX 2 - LOOM DIAGRAMS 18



l. INTRODUCTION
A Overview

This project's goal is to build a model of industrial CNC-type machines using LOOM, a
knowledge base technology. This preliminary report will show the beginning of the model
and try to motivate its creation and the particular choice of LOOM.

There are numerous modeling languages, each with special characteristics. We are using a
knowledge representation tool called LOOM. Our model is a network of concepts and
relations, connected to one another with links that show a concept's definition and its
subsumption (IS-A) relationship to other concepts.

This kind of model is controversial; there is a high start-up cost, while the design of the
concepts and relations is as much art as science. Some semantic models are good, some
are bad. Many people think that such models are just fancy forms of data-bases. We will
try to address all these issues.

B. Loom

The following description of Loom paraphrases the overview in the Loom User Guide
Version 1.4. Loom is a high-level programming language and environment intended for use
in constructing expert systems and other intelligent application programs. The LOOM
language targets a programming methodology that places heavy emphasis on the
specification of explicit, declarative domain models. Besides this language LOOM
provides: (1) powerful deductive support, including both strict and default reasoning, and
automatic consistency checking; (2) multiple programming paradigms that interface
smoothly with a declarative model specification; (3) knowledge-base facilities including a
full first-order query language; multiple knowledge bases, and dumping and loading of
knowledge-base objects (persistent objects).

The knowledge representative framework in LOOM is derived from the language KL-
ONE. As a descendent of KL-ONE, LOOM features efficient automatic classification to
compute subsumption relationships which define inheritance. LOOM's description
language, classifier, and rule language provide inference capabilities not found in current
generations of knowledge representation tools. Large knowledge bases are possible
because the classifier enforces strict adherence to the taxonomy being created.

LOOM's modeling language is a hybrid consisting of two sublanguages, a definition
language and an assertion language. The definition language expresses knowledge about
concepts and relations. The assertion language is used to specify constraints on concepts
and relations, to assert facts about individuals (instances). So, if the assertions about an
instance / collectively satisfy the definition of a concept C, then [ is recognized as an
instance of C. And thus, anything you "know" about C is true about /. And anything
you "can do" to instances of C, perhaps in the form of rules, you can do to /.



Because of the clear separation of rules from the knowledge base of concepts, large and
maintainable rule bases can be created. The deep, abstract concept taxonomy makes it
possible for the rule-builder to express the rule conditions clearly, with as much precision
as required.

C. Automation Intelligence

Automation Intelligence is a company with many products in the CAD/CAM area.
Pacific Software is in the process of reworking their post-processing configuration tool.
In that tool, information is gathered about the target CNC machine. Information, such as
machine type, axis locations, machine travel, and hundreds of other details are provided
by the user.

Like most programs, all of the constraints, limits, defaults and relationships are buried
within the code and associated text files. For many reasons, the program now needs
modernization. As an adjunct to rewriting it, we will also model the machines with which
the program deals. In LOOM terms, we are building the definitional taxonomy of
machine tool terms that the configuration tool can use.

The hope is to build a knowledge base of machine descriptions that can be used by all of
the CAD/CAM tools required by this domain. Perhaps then when two tools each talk
about a "tilting-head" spindle, they will mean the same thing.

Il THE MODEL
A Motivation

The model as shown in the appendix expresses concepts and relations about CNC
machines. The driving motivation is to model the milling machines and lathes that
Automation Intelligence's configuration tool handles.

In constructing a LOOM model, we try to express "truths" about the domain being
modeled. That is, the concepts being defined should make sense to anyone in the field.
Yet, in practice having an application in mind seems to make the modeling easier and more
focused.

The configuration tool tries to glean from the user hundreds of parameters about the target
machine. Some are required for both lathes and milling machines, some depend on the
particular type of milling machine (as we will show in the next section), some depend on
the value of parameters the user has just specified. However, in the configuration tool,
the relationships between all these parameters is opaque. How setting one parameter
affects the others is hardly known by anyone--only the code knows and it's not very
forthcoming.

B. The Definitions - Concepts and Relations

Consider the following concept definitions:



(defconcept Machine)
(defconcept Material-Removing-Machine :is-primitive Machine)

(defconcept Live-Tooling-Machine :is
(and Material-Removing-Machine
(at-least 1 has-cutting-spindle)
(exactly 1 has-primary-cutting-spindle)
)

First, Machine is defined. It is given no roles--roles are also called relations. Then, a
Material-Removing-Machine is defined as a kind of Machine. Again, no roles have
been specified. At this point in the modeling exercise the categories for the taxonomy are
being fleshed out.

Next, we define a live tooling machine, that is, a machine that removes material by
spinning a cutting tool. Thus, a Live-Tooling-Machine is defined to be a Material-
Removing-Machine that has at least one cutting spindle and exactly 1 primary cutting
spindle. Notice that these roles can overlap; the primary cutting spindle will be one of
the cutting spindles.

The roles, has-cutting-spindle and has-primary-cutting-spindle, are relations of Live-
Tooling-Machine that differentiate it from a Material-Removing-Machine. Later in
this project lathes will be shown to be Material-Removing-Machine that spin their
workpieces and apply nonspinning tools to them.

The :is-primitive verb tells LOOM that though a Material-Removing-Machine is a
kind of Machine with the specified characteristics, there is some additional property that
all Material-Removing-Machine's have (but that Machines in general don't) that has
not been modeled. Thus LOOM will never infer that any instance of Machine is a
Material-Removing-Machine unless it is explicitly stated. The use of :is in the
definition of Live-Tooling-Machine means that Live-Tooling-Machine is fully defined
by its stated properties. Thus any instance of Material-Removing-Machine that has at
least one cutting spindle and exactly one primary cutting spindle will be recognized by
LOOM as a Live-Tooling-Machine.

The specifier, :is-primitive, is used in those cases where a concept is undefinable in
terms of its features (such as natural kinds), or we choose not to fully model it because it

would be too difficult or is not needed. This is the case for Live-Tooling-Machine.

The definition of a relation is just as important as the definition of a concept. Consider:



(defrelation has-attachment :is-primitive :range Thing-With-3D-Offset)

(defrelation has-spindle :is
(and has-attachment
(:range Spindle-Assembly)))

(defrelation has-cutting-spindle :is
(and has-spindle
(:range Cutting-Spindle-Assembly)))

Thus, has-attachment is that relation whose range is Thing-With-3D-Offset, i.c.,
objects that have a position. Then, has-spindle is that kind of has-attachment whose
range is a Spindle-Assembly, which is a kind of Thing-With-3D-Offset.

Finally, we have has-cutting-spindle, which specializes has-spindle by tightening the
range from a Spindle-Assembly to a Cutting-Spindle-Assembly. Now we have the
ability to distinguish between machine descriptions based on spindle types. We will be
able to ask how many spindles a particular machine has, how many cutting spindles it
has, and if the numbers are different, perhaps infer that we have a hybrid Lathe/Milling
machine. Or, if we know the machine is precisely a Live-Tooling-Machine, we might
infer that any spindles it has are probably cutting spindles. The point is that at least we
some information on which to base our reasoning.

Notice that in applying a relation, such as has-cutting-spindle, to a concept, we used
:at-least and :exactly to specify the cardinality of the objects filling the roles. These and
other relation forming operators give LOOM expressive power that differentiates it from
traditional data bases.

Now we come back to the machine descriptions. First, a simple view of the Milling-
Machine concept.

(defconcept Milling-Machine :is-primitive
(and
Live-Tooling-Machine
(exactly 1 home-position)
(at-least 1 has-machining-table)
(at-least 1 motion-axis)

)

Whether this definition is correct or not is unimportant for now. We are just building up
a taxonomy of terms. A model like this will change as we learn more about the domain
and its differentiating terms. For the Milling-Machine we have added the roles for a
home position, a machining table, and a motion-axis. Now, we come to one of
Automation Intelligence's machine types:



(defconcept Machine-Type-2 ;5 Al machine pg. 2-17
""4-Axis Machining Center with contouring Rotary Table"
;s
(and
Milling-Machine
(exactly 3 automated-primary-axis)
(exactly 1 automated-rotary-axis)
(the has-machining-table Rotary-Table)
(same-as
automated-rotary-axis
(:compose has-machining-table motion-axis)

)

This "4-Axis Machining Center with contouring Rotary Table" is defined as a Milling-
Milling with a Rotary-Table and 4 automated motion axis. 3 are the primary ones (X,
Y, and Z), while the fourth is a rotary one (either A, B, or C). Also, the filler of the
automated-rotary-axis is the same as the filler of Rotary-Table's motion-axis

Notice how this definition carefully specializes a Milling-Machine. Machine-Type-2's
machining table is a Rotary-Table, which is a kind of Table-Assembly (as required by
the has-machining-table role). A Milling-Machine has at least 1 motion-axis;
Machine-Type-2 has four motion axes, 3 are of type automated-primary-axis and 1 is
an automated-rotary-axis one. Both are defined in terms of motion-axis.

Now that we have this detailed specialization taxonomy of terms, we can start to create
instances of them.

C. The Extensions - Instances

Thus far, the model has just created abstract terms. It is as if we had defined a taxonomy
of vehicles, cars, GM cars, Chevrolets, and Corvettes. Now we want to talk about that
red Corvette in front of our building.

There may or may not be any real-world objects that are described by Machine-Type-2.
If there are, they are represented separately from the descriptive terms. In LOOM we
can create instances of the concepts. For example:

(tell (create m2-1 Machine-Type-2))

This statement creates an instance named m2-1, which is of type Machine-Type-2. And
everything we know about Machine-Type-2, is true of m2-1. In fact, we know that it
has one rotary axis. We do not know which one it is, only that it has one. In the
Automation Intelligence configuration tool, if the user selects Machine-Type-2, one of
the questions the system asks is which rotary axis does it have. The user types A, B, or
C in the appropriate field. Here, in LOOM it is expressed as follows:



(tell (create abx-1 automated-B-axis))
(tell (automated-rotary-axis m2-1 abx-1))

The instance abx-1 is created to be one of the rotary axes and then the system is told that
it is m2-1's automated-rotary-axis.

All the unfilled roles can be specified or not. It depends on what is needed. Ifit is not
important to know which rotary axis m2-1 has, don't ask. The point is to have a model
on which to base questions. The Automation Intelligence configuration program
obviously needs all the specifications. Since it does, it uses defaults extensively. LOOM
can express defaults as follows:

(defconcept Tilting-Table :is-primitive
(and
Table-Assembly
(the motion-axis (or A-Axis B-Axis C-Axis)))
:default
(the motion-axis A-Axis))

This concept has a motion-axis role filled by one of the rotary axes. If it is not stated
explicitly, then the motion-axis filler defaults to the A-Axis.

D. Queries and Retrieval

Once instances are created, they can be queried and retrieved. For example:
(ask (Live-Tooling-Machine m2-1))

asks if m2-1 is a kind of Live-Tooling-Machine. This query returns true because m2-1
is of Machine-Type-2 which is a kind of Milling-Machine which is a Live-Tooling-
Machine. Here is an example of a retrieval:

(retrieve (?x) (and (Milling-Machine ?x)
(Rotary-Axis (motion-axis ?x))))

This asks for all instances that are Milling-Machines and have a motion-axis that is a
kind of Rotary-Axis. All instances which are of type Machine-Type-2 will obviously
be returned because of its definition, but perhaps there are other Milling-Machines who
have a motion-axis that happens to be filled by a Rotary-Axis, but not necessarily by
definition.

Notice how flexible this retrieval request is, especially when compared to typical data
base requests.

M. THE VALUE OF THE MODEL
A Inheritance and Specialization



This specialization taxonomy is laborious to construct, but there are many payoffs. The
subsumption relationships are enforced by the classifier. For example, if you attempt to
create an instance of a Milling-Machine without a cutting spindle, the system will
recognize the inconsistency.

LOOM's use of classification is not typically found in systems that have the notion of
classes. In frame systems or object-oriented programming languages classes are created
mainly as places to put data structures and methods; subclasses can inherit unspecified
data and methods from their supers. There is no notion of classification or recognition
like LOOM has. LOOM's subclassing is limited. Roles must be added or tightened to
create subclasses.

One way to specialize a concept is to specialize a filler of a role or the role itself, such as
how Cutting-Spindle-Assembly specializes Spindle-Assembly. These fillers and roles
are the "bounds" that restrict the values that can be taken on by its instances. In our
example with Machine-Type-2, had the user told us that the X-axis is the rotary-axis of
the machine, we would know by the definition of the role that the filler must be one of A-
Axis, B-Axis, or C-Axis, and therefore his answer of X-axis would be rejected.

B. Knowledge Base vs. Data Base

Knowledge bases and data bases are different not only in form but in how they are used.
A data base is a collection of tables, each table is a collection of records, and each record is
a collection of fields. Each table is characterized by a schema which defines the fields in
the record and perhaps some boundary conditions. Knowledge bases can be loosely
defined in these terms as well.

In a LOOM knowledge base, each instance is like a data-base record. An instance's
defining concepts are its schema. Its "fields" are the fillers for its roles. There is really no
analog to a table, though if you focused on an important concept such as Machine-Type-
2 and listed all its instances, that list would be like a data-base table.

The key point is that every concept is the potential schema for some collection of
instances. Machine-Type-0, Machine-Type-2, or Cutting-Spindle-Assembly can all
be instantiated with their roles filled by other instances. But a concept is more than just a
pattern used to itemize fields. Records have fixed fields, concepts have role forming
operators such as at-least, at-most, and exactly that a system can reason about. Fields
are simply names to a data-base, while concepts and roles form the elaborate taxonomy
we have been describing.

For example, a data-base record for an employee might have two fields named primary-
phone and backup-phone (or more likely, phl and ph2). Because of the names the data
base searcher might recognize that information for what it is.

In LOOM, an employee concept might have two roles each filled by a PhoneNumber
concept. One role might be called primary-phone which is a kind of phone relation and
a kind of primary relation, the other role just called phone. There might be rules in the



knowledge base that say that in order to get in contact with someone, you should look for
roles which are a kind of communication role. Retrieving those roles, you might get to
the phone roles. Then, another heuristic might know about primary relations, that they
might make a good metric on which to sort. And on and on and on. That kind of
reasoning is unavailable to the data base programmer. LOOM's structured roles support
this kind of reasoning.

A data base record's field names have no relation to one another other than through the
semantics the user can infer from the names themselves. Data bases are organized for
storing large amounts of similar data and quickly retrieving information from them.
Knowledge bases are organized to strictly define terms and reason about their instances.
Neither should be thought of as a substitute for the other. Using LOOM as a data base
would be ludicrous. Using it to help define schemas for a data base would be fine.

IV.  CONCLUSION

The machine model knowledge base described here is just in its infancy. Yet, even in this
state some interesting concepts and relations have been defined. The purpose of this
paper is to show that such a model is relevant and has value to a variety of potential
users. We only hinted at the value of this knowledge base to Automation Intelligence's
configuration program, but other machine applications would benefit from this knowledge
base, if only to have common terms.

The knowledge base has high start up costs. It takes hundreds of concepts and relations
to model even simple things. But there is significant added value. Many different
paradigms can coexist within the LOOM knowledge base infrastructure. Object-oriented
programming, production rules, and problem-solvers of all kinds could benefit from
LOOM's classified taxonomy.

10



V. APPENDIX 1 - THE MODEL IN LOOM

(make-package "MACHINE-MODEL")

(in-package "M ACHINE-MODEL")

(loom:use-loom "MACHINE-MODEL")

(detkb "MACHINE-MODEL-KB" nil :path-name "/u/pss/ai/loom/MachineModel.kb")
(change-kb "MACHINE-MODEL-KB")

(defrelation x-coordinate :range Number)
(defrelation y-coordinate :range Number)
(defrelation z-coordinate :range Number)

(defrelation object)

(defrelation position :is-primitive (:range 3D-Coordinate))

(defrelation has-attachment :is-primitive (:range Thing-With-3D-Offset))
(defrelation attached-to :is (inverse has-attachment))

(defrelation home-position :is-primitive
(and position (:range Zero-3D-Coordinate)))

(defrelation has-spindle :is
(and has-attachment
(:range Spindle-Assembly)))
(defrelation spindle-orientation :domain Spindle-Assembly
:range (one-of 'Horizontal 'Vertical))
(defrelation max-revs-per-minute :domain Spindle :range Integer)

(defrelation has-cutting-spindle :is
(and has-spindle
(:range Cutting-Spindle-Assembly)))
(defrelation has-primary-cutting-spindle :is-primitive has-cutting-spindle)
(defrelation hold-cutter :domain Cutting-Spindle
:range (:or Cutter-Assembly Cutter))

(defrelation has-machining-table :is
(and has-attachment
(:range Table-Assembly)))
(defrelation part-of)

11



(defrelation motion-axis :range Motion-Axis)
(defrelation rotary-axis :is
(and motion-Axis
(:range Rotary-Axis)))
(defrelation primary-axis :is
(and motion-Axis
(:range primary-Axis)))
(defrelation automated-motion-axis :is
(and motion-axis
(:range Automated-Axis)))
(defrelation automated-primary-axis :is
(and primary-axis automated-motion-axis))
(defrelation automated-rotary-axis :is
(and rotary-axis automated-motion-axis))
(defrelation non-orthogonal-motion-axis :is-primitive motion-axis)
(defrelation name :range String)
(defrelation powered-by :range (one-of 'Automated 'Manual))

(defconcept 3D-Coordinate :is-primitive
(and
(exactly 1 x-coordinate )
(exactly 1 y-coordinate )
(exactly 1 z-coordinate )
)
(defconcept Zero-3D-Coordinate :is
(and
3D-Coordinate
(the x-coordinate 0)
(the y-coordinate 0)
(the z-coordinate 0)

)

(defconcept Axis)

(defconcept X-Axis :is-primitive Axis)
(defconcept Y-Axis :is-primitive Axis)
(defconcept Z-Axis :is-primitive Axis)
(defconcept A-Axis :is-primitive Axis)
(defconcept B-Axis :is-primitive Axis)
(defconcept C-Axis :is-primitive Axis)

12



(defconcept Motion-Axis :is-primitive
(and
Axis
(at-least 1 powered-by)))

(defconcept Rotary-Axis :is
(and Motion-Axis
(or A-Axis B-Axis C-Axis)))

(defconcept Primary-Axis :is
(and Motion-Axis
(or X-Axis Y-Axis Z-Axis)))

(defconcept Automated-Axis :is
(and Motion-Axis (the powered-by 'Automated)))

(defconcept Manual-Axis :is
(and Motion-Axis (the powered-by 'Manual)))

(defconcept Automated-X-Axis :is
(and X-Axis Automated-Axis))
(defconcept Automated-Y-Axis :is
(and Y-Axis Automated-Axis))
(defconcept Automated-Z-Axis :is
(and Z-Axis Automated-Axis))
(defconcept Automated-A-Axis :is
(and A-Axis Automated-Axis))
(defconcept Automated-B-Axis :is
(and B-Axis Automated-Axis))
(defconcept Automated-C-Axis :is
(and C-Axis Automated-Axis))

(defconcept Thing-With-3D-Offset :is
(and
(exactly 1 position)
(exactly 1 object)))

13



(defconcept Machine)

(defconcept Machine-Attachment :is-primitive
(and
(the attached-to Machine)))

(defconcept Material-Removing-Machine :is-primitive
(and Machine))

(defconcept Forming-Machine :is-primitive
(and Machine))

(defconcept Cutting-Machine :is-primitive
(and Machine))

(defconcept Live-Tooling-Machine :is-primitive
(and Material-Removing-Machine
(at-least 1 has-cutting-spindle)
(exactly 1 has-primary-cutting-spindle)
)
(defconcept Dead-Tooling-Machine :is-primitive
(and Material-Removing-Machine))
(defconcept Erosion-Machine :is-primitive
(and Material-Removing-Machine))
(defconcept Grinding-Machine :is-primitive
(and Material-Removing-Machine))

(defconcept Milling-Machine :is-primitive
(and
Live-Tooling-Machine
(exactly 1 home-position)
(at-least 1 has-machining-table)
(at-least 1 motion-axis)

)

14



(defconcept Table)
(defconcept Table-Assembly :is
(and
Thing-With-3D-Offset
(the object Table)
(the attached-to Machine)
(at-most 6 motion-axis)
)
(defconcept Tilting-Table :is-primitive
(and
Table-Assembly
(the motion-axis (or A-Axis B-Axis C-Axis)))
:default
(the motion-axis A-Axis))

(defconcept Rotary-Table :is-primitive
(and
Table-Assembly
(the motion-axis (or A-Axis B-Axis C-Axis)))
:default
(the motion-axis B-Axis))

(defconcept Raw-Material)
(defconcept Workpiece :is-primitive
(and
Thing-With-3D-Offset
(the object Raw-Material)
(the attached-to Fixture)))

(defconcept Holder)

(defconcept Fixture :is-primitive
(and
Holder
(the attached-to Table-Assembly)))

(defconcept Spindle :is
(and
(exactly 1 max-revs-per-minute)

),
(defconcept Cutting-Spindle :is

(and Spindle
(exactly 1 hold-cutter) ;; at-least ??

)

(defconcept Spindle-Assembly :is-primitive

;; parallel to spindle

15



(and

Thing-With-3D-Offset

(the object Spindle)

(exactly 1 spindle-orientation)
)
(defconcept Cutting-Spindle-Assembly :is-primitive

(and Spindle-Assembly

(the object Cutting-Spindle)))

(defconcept Tilting-Head :is-primitive
(and
Cutting-Spindle-Assembly
(the motion-axis (or A-Axis B-Axis C-Axis))) ;;parallel to spindle
:default
(the motion-axis A-Axis))

(defconcept Nonorthogonal-Head :is-primitive
(and
Cutting-Spindle-Assembly
(the motion-axis C-Axis) ; main spindle axis
(the non-orthogonal-motion-axis B-Axis)))

(defconcept Cutter)
(defconcept Cutter-Assembly)

(defconcept Machine-Type-0 ;; Al machine pg. 2-13

"3-Axis Machining Center with or without Positioning Rotary Table"
18
(and
Milling-Machine
(exactly 3 automated-motion-axis)
(filled-by automated-motion-axis

Automated-X-Axis Automated-Y-Axis Automated-Z-Axis)

;; notice that we didn't say how the motion axis worked, e.g., in the
;; Z-direction, does the spindle or the table move? IPOST doesn't care.
;; The instances will declare how the movement occurs.

)

16



(defconcept Machine-Type-2 ;; Al machine pg. 2-17
"4-Axis Machining Center with with contouring Rotary Table"
1S
(and
Milling-Machine
(exactly 3 automated-primary-axis)
(exactly 1 automated-rotary-axis)
(the has-machining-table Rotary-Table)

)

(tell (create m0-1 Machine-Type-0))

(tell (create m2-1 Machine-Type-2))

(tell (create abx-1 automated-B-axis))

(tellm (automated-rotary-axis m2-1 abx-1))

(ask (Live-Tooling-Machine m2-1))

(retrieve (?x) (and (Milling-Machine ?x)
(Rotary-Axis (motion-axis ?x))))

(retrieve (7x 7y)
(and (MACHINE-TYPE-2 ?x)
(automated-rotary-axis ?x ?y)
(Rotary-Axis ?y)
(Automated-Axis ?y)))
(retrieve (?x) (and (MACHINE-TYPE-2 ?x)
(automated-B-axis (automated-rotary-axis ?x))))

17



