DataFinder: Semantically Informed Search in Metadata Repositories

Thomas Russ and Hans Chalupsky

University of Southern California Information Sciences Institute

The Data Finding Problem

- Pathway computations generate large number of data products (stored in digital libraries)
- If there is metadata, it is complex, low-level, non-uniform, and constantly evolving
- Finding results or reusing previously computed products is hard

 Very large space of potentially relevant files
 - Which metadata attributes describe what I want?
 - Complex search interfaces
- · Example query
 - Find PGA hazard maps within rectangular region bounded by 34°N, 122°W and 37°N, 118°W
 - Looks simple
 - Go to MvSRB or other metadata search interface
 - Specify metadata attribute constraints
 - Get results
 - But how do you know which attributes to use?
 - How do you phrase the query? SELECT 2mapfile WHERE
 - Attributes are different for
 - pathway 1 and 2 • Type information is implicit
 - Some joins are complex

The DataFinder Solution

- Semantically informed search tool
 - Semantic search based on semantic description of data products
 Ontologies & rules define meaning of relevant terms in a domain

AND file_logical_type = "JPEGFile"

AND EqkRupForecast.url = ?url AND THERE EXISTS ?forecast_file

WHERE file_logical_name = ?url AND EqkRupForecast.NumRuptures > 1

AND IMR.IMT Type = "PGA"

- e.g., PGA map, Hazard map, multi-event rupture, etc.
- Mappings define meaning of metadata attributes in domain terms
 Query translator rewrites domain queries into metadata attribute
- queries – Query executor runs translated queries against repositories and
- Query executor runs translated queries against repositories and combines results
- Query translation
 - Semantic query cannot be run directly on repositories
 MCS, SRB, etc. only understand attribute/value queries
 - Must translate semantic language to low-level attribute language
 - using ontologies, mappings and logical inference
 - · potentially creating multiple queries
 - · well-researched problem in data integration
- · New query translation algorithm
 - allows very expressive domain language and rules
 - results in very **compact conjunctive queries**
 - offloads "heavy lifting" to external repository
 - "patent almost pending"

DataFinder Features

- · Semantic querying
 - Find data & products based on their meaning, not low-level features
 Containment reasoning (subsumption) for types and regions
- · Aggregation of metadata distributed over multiple files
 - combine metadata from multiple objects
 - "pathway-1-style" vs. "pathway-2-style"
- Transparent support of different metadata schemata

 different metadata used by different researchers/codes
 different metadata standards (SCEC vs. FGDC)
- Scalability
 - use query rewriting to translate domain level queries
 push conjunctive queries and constraints to MCS, SRB backend
- Extensibility without recoding
- add new abstractions to the ontology
- add new attributes and mappings without affecting existing ones
- Integrated with MCS and SRB
 - provides semantic layer on top of Metadata Catalog
 leverages PowerLoom[™] inference & RDBMS interface
 - leverages PowerLoom[™] inference & RDBMS int
 - query multiple repositories simultaneously
- Generic technology—widely applicable

 Example: Velocity meshes, and Pathway-1 products
 - Other domains

But Which Attributes are Relevant?

DataFinder Architecture

Velocity Mesh and Product Finder Interfaces

