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Introduction Reasoning with the Powerloom System BioScholar: A web-based system for KEfED models
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elements may be complex, and will certainly need to be refined as we instantiate the approach in new systems. (B) A ‘fake’ example: showing multiple Experimental Objects, Activities and Variables. (C) The
dependencies of varaibles in [B] based on pathways through the protocol. (D) Tabulated ‘fake’ data for the two dependent variables in this example. Figure 7:
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