
* Supported by the Advanced Research Projects Agency
under contract MDA903–87–C–0641.

Use of Abstraction to Simplify Monitoring

Thomas A. Russ*
USC/Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292
tar@isi.edu

Overview of Approach

I apply existing technology for the construction of

monitoring systems to the ICU data set provided by

the Symposium organizers. The large volume of

data in the ICU set compels any reasoning system to

operate efficiently. It is also a good test of scalability

of the approach. In order to reach the required

efficiency, heavy use must be made of abstraction in

order to limit the extent to which new data samples

cause reevaluation of derived conclusions.

I describe the Temporal Control System (TCS), a

programming system designed for building

intelligent temporal monitoring programs.

Empirical results from the ICU date set validate the

scalable design of the TCS. I then focus on the

problem of generating interval values from sample

points via persistence assumptions. The TCS

provides both the framework for the implementation

as well as a method of calculating the “cost” of

different approaches. In particular, I show that

limiting the time span of a persistent interval can be

very costly and then suggest how the application of

symbolic abstraction can help. Further performance

improvements come from the development of

additional temporal abstraction techniques.

Description of Temporal Control System

The Temporal Control System [Russ91] is a

programming framework designed to facilitate the

construction of monitoring applications. It uses

dependency-directed updating to allow temporal

information to be entered in any order while

assuring that all affected calculations are redone.

TCS uses data dependency declarations made

during the building of an application to monitor

information in temporal variables. As the

information in those variables changes over time, all

calculations which depend on that information are

automatically recalculated to bring the system up to

date.

A TCS application consists of modules which

implement arbitrary reasoning strategies, and

temporal variables which hold data. Each module’s

dependency on temporal variables is declared in

advance. TCS performs the bookkeeping tasks

needed to assure that information is propagated to

the appropriate modules and that the reasoning in

the system is kept up-to-date. The data dependency

algorithm does not depend on the particular form of

reasoning used in a module. Module functions are

treated as black boxes whose inputs and outputs are

monitored. Whenever the input data to a module

changes, the TCS schedules a process instance to

execute. As input values change, this results in a

chain of process instances along the time line.

Process
Instance

Process
Instance

Process
Instance

Time

Input

Output

If the output value changes, this change is

propagated in turn. When there are no more

changes, propagation stops and the application is

up-to-date. Since the TCS model has a fundamental

unit of computation, the process instance, counting

the number of invocations of process instances for a

particular module gives a hardware independent

method of assessing the amount of computation

involved in processing temporal data. I will use this

measure in the experiments described below.

This method of propagating information and using

the automatic updating facilities has been applied in

the areas of cardiac intensive care and the

management of acute diabetic ketoacidosis. The TCS

is specifically designed to allow information to

arrive out of order, and for previous information to

be changed [Russ90]. These particular attributes are

not needed for processing the Symposium data set,

since all of the information arrives quickly and in

order.

The TCS approach differs from other signal

processing approaches such as VM [Fagan80] and

blackboard architectures [Nii82] in that the data

dependencies allow the system itself to handle the

overhead of retraction and new calculation.

ICU Data Set

I have combined the ICU data sets into one master

file so that the information can be processed in

temporal sequence. There is a large amount of data

that needs to be processed. 8,050 data points are

available at 2,623 separate times (average of 3.06

items per session). The minimum time separating

any of the data points is one second. The maximum

time separating the data points is three hours and

forty-seven minutes. The average elapsed time

between data points is 25 seconds. Once monitoring

starts, the average elapsed time between data points

is less than 20 seconds (17.95).

The implications of these figures is that any

reasoning system that hopes to operate in real time

must be able to process a large amount of

information quickly. On average, the system must

be able to handle around 10 data items per minute.

Note that this includes the processing of the raw

information as well as the higher level deliberation

of the system. In this paper I will restrict my

attention to the low-level processing of the raw data.

Although there is a lot of data to be processed, most

it does not add information to the existing

description of the patient's state. In order to not

have the system collapse under the weight of the

new data, the redundant information must be

eliminated from consideration as soon as possible.

Use of Abstraction to Simplify Problem

The standard approach to eliminating unimportant

details is to use abstraction of the detailed

information. In addition to the TCS, recent medical

AI work [Haimowitz93, Kahn90] has examined

abstraction methods for handling temporal data. By

suppressing the unimportant details, a reasoner can

focus on the important principles. This is

particularly important when there is a lot of

automated monitoring. Such systems can produce

data much faster than the raw information can be

assimilated. There are several levels at which this

abstraction can occur:

Symbolic Abstraction to Cut-Off Propagation

The first and most common approach is to abstract

raw numeric data into symbolic (or even numeric)

ranges. This serves two purposes: 1) It reduces the

reliance of higher level reasoning on the specific

numeric value of the underlying data. The same

reasoning can then be used in different situations

just by varying the function that is responsible for

abstracting the numbers into symbols. 2) By

mapping many numeric values into fewer symbolic

values, one can use a simpler test to determine

whether the information needs to be propagated. In

particular, by testing for symbolic equivalence, the a

system such as TCS can operate without the need to

have domain-specific knowledge in its propagation

algorithm. This makes it easier to use the same tool

in more than one application.

Time Scale Abstraction to Reduce Computation

In addition to the benefits above, symbolic

abstraction typically has another benefit that serves

to reduce the amount of computation needed to

process the data. In addition to summarizing

multiple numeric results with the same label, the act

of summarization will generally cover a larger time

period. This means that the same decision is valid

not only for several different numerical values, but it

remains stable for a much longer period. In a system

that is organized around the propagation of changes,

this results in less computation.

Temporal Granularity to Reduce Computation

Unfortunately, these approaches are not sufficient in

and of themselves. The data set for the ICU data is

so large that new techniques need to be invented.

The fatal flaw lies in the interaction between the use

of time-limited persistence and the inexorable

advance of the time of information. If one simply

preserves the values for a fixed period of time, then

each new data point will extend the derived

persistent interval by the amount of time since the

last data sample. With data samples arriving faster

than two per minute this can become overwhelming.

The solution to this is the use of temporal

granularity to limit the amount of computation. For

example, if persistence were eight hours with a

granularity of 15 minutes, then all data points within

a fifteen minute window would not affect the length

of time of the resulting persistent abstraction. This

will eliminate the need to gratuitously re plan the

future based on another 20 seconds of projected data

values. This technique is an abstraction along the

temporal dimension. The introduction of ranges for

the temporal values is analogous to the use of

numeric ranges for data values.

Description of Experiments

In the experiments described here, a sample TCS

application was built that performed the abstraction

of data samples into interval values. A system

covering all of the data was used for the scalability

experiment. A much simpler system was used to

investigate the interaction of different types of

abstraction with different persistence assumptions.

In the scalability test, the most expensive method

was used.

Scalability Test

The large amount of data available in the ICU data

set means that any practical scheme must have run

time characteristics that are essentially independent

of the amount of data that must be processed. To

demonstrate this feature, I created a TCS system that

performed time limited persistence of raw data

values. As I show in the next section, this particular

type of persistence is actually quite expensive

computationally. The test used a Macintosh Quadra

800 running this test system on the entire data set of

2622 data entry points. The results are shown

below. The processing speed is the number of data

entry points processed per minute. The data values

are the average results of two tests.

Processing Speed vs. Data

Processed

Number of Points Processed

Rate
[1/min]

0

100

200

300

400

0 1000 2000 3000

Data
Fitted

There is an initial slowdown in processing as more

data is encountered, but processing then reaches a

steady-state plateau. The graph was divided into

two regions (0–1800 and 1800–2600) for least squares

regression fitting. The first region was well

described by a line with slope -0.13 (R2 =0.96). The

second region is described by a straight line (slope =

0.006) and shows no correlation (R 2 =0.04) with the

number of data points processed. The steady-state

performance of the TCS is therefore independent of

amount of data previously processed.

The initial slowdown is due to the effects of building

up a set of processing intervals that become

fragmented as more data is added. When the first

datum is encountered, the system is able to project

its value forward up to the pre-set time limit. This

involves reexecuting the persistence process over the

time that has been changed. It also means that any

derivative calculations must be reexamined for

changes. Since the TCS takes a black box approach

to the actual reasoning processes, it is necessary to

re-run processes to cover the time of the change.

Since the length of an interval value is also available

for reasoning, it is also necessary to re-run processes

for intervals whose values haven’t changed, but

whose duration has been shortened. Since the

reasoning is a black box, it is not possible to know

whether a change in the duration of the interval

would affect the outcome of the decision. If there is

no change, then propagation ceases. The effects in

terms of excessive calculation suggest that making

more information available to the scheduling

algorithm is a fruitful avenue for future work.

Since not all of the data is collected with the same

frequency, it takes longer for some of the persistence

calculations to saturate and reach steady state

conditions. Once this condition is achieved, though,

the time to process the information does not

increase. As long as the steady-state processing is

fast enough to handle the data, a TCS system will

scale to meet the challenge.

Persistence Tests

Having passed the first qualifying hurdle for use in a

monitoring setting, we can now turn our attention to

the problem of increasing the efficiency of the

reasoning. I begin by considering three forms of

persistence calculation: infinite, time limited and

time-limited with granularity. Infinite persistence

means that a data value is retained until it is

replaced with a newer reading. This has the

advantage of simplicity, but it allows the use of

potentially outdated information in clinical

reasoning. Since the abstraction process moves the

focus of the data from the actual time-stamped value

into a state abstraction, there is no easy way for

subsequent reasoning modules to know how old the

data is. Time limited persistence solves this problem

by associating a maximum allowable persistence for

any measurement. If no new information is

obtained before this deadline expires, then the state

value reverts to “unknown.” This provides a simple

method to eliminate outdated information. Limiting

the persistence with granularity means that the

endpoints chosen for persistence values are

constrained to be even multiples of the grain size.

This modification was developed to increase the

efficiency of time limited performance, particularly

when combined with value abstraction.

Schematically, the three abstraction methods look

like this:

Infinite
Limited
Granularity

Infinite
Limited
Granularity

Infinite
Limited
Granularity

A

A B

A B C

First
Point

Two
Points

Three
Points

Note in particular that the granularity endpoint for

the “Two Points” case is in the same place as “First

Point”.

To allow deeper analysis I performed several

experiments using just one of the measured

parameters—heart rate as measured by the EKG.

This provided 627 samples of mostly noise-free data

for analysis. I then examined the effects of using

different persistence schemes on derivative

calculations. The test system was a simple TCS

system consisting of just two modules and two

variables. The first module took the raw point data

as input and produced interval values as output.

This is a temporal abstraction operation. The second

module took the interval value as its input and

served as a vehicle for assessing the affect of

different choices of temporal abstraction on

subsequent system processing. In other words, the

second module recorded how much data was being

passed on for further processing by what would be

the higher level intelligence of the monitoring and

control system.

Unfortunately, this is more much more expensive

than using the infinite persistence model. Using the

TCS scheduling algorithm, infinite persistence

caused 1,254 invocations of the secondary reasoning

module (or 2 per data point). This is expected from

the analysis of the black box scheduling assumption.

Using a time limited persistence of 240 seconds, the

number of processes scheduled was 4,372 (about

three and a half times more). Part of the problem is

that the period of time covered by the persistence

extends each time a new data point is encountered.

For example, at time 0 the persistence extends until

time 240. New data at time 10 cause a reexamination

of the period from 10 to 240, as well as extending the

persistent interval until time 250. More data at time

15 forces reexamination from 15 to 250 and extends

the persistence from 250 to 255 as well, etc.

It is unlikely that the incremental extensions of the

persistence are clinically significant. One way to

limit this is to set up a “granularity” in the

persistence assumption. If the persistence

granularity were set to 60 seconds, then only

changes in input data more than 60 seconds apart

would cause the extent of the persistence to change.

A change in value would still cause recalculation

within the existing persistence window.. Using such

a granularity scheme improves the performance

figures for the heart rate data by about 30%,

reducing the number of secondary processes run

from 4,372 to 3,097. This is still 2 and a half times as

many as for infinite persistence, so there is still a

significant price to pay for limited persistence. (The

process scheduling heuristics are not well designed

for this particular case. By changing the heuristics to

ones tuned for this type of reasoning I was able to

reduce the overhead to only a 50% increase for the

time-limited persistence and further reduce it to 30%

when granularity was added.)

The desire to limit the persistence time forces us to

pay a computational price in order to avoid

reasoning with stale data. Fortunately, there are

other techniques that can be applied which simplify

the reasoning and let us reclaim the lost

performance.

Abstraction Tests

A careful examination of the heart rate data indicates

that most of it has the following form:

"8/16/93 23:24:44" 176
"8/16/93 23:26:04" 175
"8/16/93 23:26:24" 176
"8/16/93 23:26:44" 175
"8/16/93 23:27:02" 176

In other words, most of the changes from one

reading to the next were insignificant. A more

rigorous analysis of the heart rate data indicates that

there were no two consecutive values that were the

same, but that only 60 out of 627 samples changed

by more than one from the previous value. Only 30

samples showed a sample-to-sample change of 5 or

more. It is also the case that only gross changes in

heart rate are clinically meaningful. If we can

introduce such a distinction early in the data

processing, then we can save subsequent reasoning

tasks the trouble of determining that the information

is about the same. To that end we introduce a value

abstraction transformation. The following table

shows three different abstraction functions that were

used in the experiments. The first two break the

numeric scale into ranges of 5 and 10 and only use

the range of the answer as the persistent value. If

two values occur that are in the same range, then

that is treated as no change in the data value. (Any

temporal persistence is still used, though). “Stratify”

divides the numeric range into three categories.

Heart Rate Abstract 5 Abstract 10 Stratify

< 160 10 10 10

160–165 176

165–170 120 296 359

170–175 63

175–180 226 289

180–185 20 258

185–190 5 25

> 190 7 7

By changing the value of the persistent information

from a fluctuating numeric measure to an abstract

value we can insulate higher level reasoning

functions from this fluctuation. The effects of using

this abstraction technique are dramatic. We will first

consider the effects with infinite persistence. In this

case, no transformation caused 1,254 invocations of

the higher level calculation. With the 5 unit

abstraction, this dropped to 192, with 10 unit

abstraction to 126 and with stratify 132. For a real

application the size of the abstraction bands and the

breakpoints for doing a symbolic stratification will

be determined by the medical requirements. The

experimental results also show significant, though

not as large, reductions in the number of secondary

calculations used by limited persistence and limited

persistence with granularity.

Infinite Limited w/ Granularity

No Abstraction 1254 4372 3097

Abstract 5 192 1795 1159

Abstract 10 126 1664 1052

Stratify 132 1643 1052

Conclusion

The TCS methodology is shown to scale well for

problems with a large amount of data that needs to

be processed, since the running time is

fundamentally independent of the amount of data

entered into the system. I describe a method for

producing abstract interval descriptions from point

data. Varying the parameters of this transformation

allows us to see the performance characteristics of

various options. The use of abstraction provides a

big reduction in the number of subsequent

computations needed. Adding time limited

persistence has the effect of greatly increasing the

number of computations. Adding granularity to

time limited persistence makes a big improvement.

References

[Haimowitz93] IJ Haimowitz and IS Kohane, “An

Epistemology for Clinically Significant Trends”,

Proceedings of the Eleventh National

Conference on Artificial Intelligence, pp. 176–

181, 1993.

[Russ91] TA Russ, Reasoning with Time Dependent
Data, PhD thesis, MIT, 1991.

[Russ90] TA Russ, “Using Hindsight in Medical

Decision Making,” Computer Methods and
Programs in Biomedicine , 32(1):81–90, 1990.

[Kahn90] MG Kahn, CA Abrams, et al., “Automated

Interpretation of Diabetes Patient Data:

Detecting Temporal Changes in Insulin

Therapy,” Symposium on Computer Applications in
Medical Care , pp. 569–573, 1990.

[Fagan80] LM Fagan, VM: Representing Time-
Dependent Relations in a Medical Setting, PhD

thesis, Stanford, 1980.

[Nii82] HP Nii, EA Feigenbaum, et al., “Signal to

Signal Transformation: HASP/SIAP Case

Study,” AI Magazine, 3(2):23–35, 1982.

