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AAAAbbbbssssttttrrrraaaacccctttt

The VEIL (Vision Environment Integrating Loom) project focused on integrating
advanced knowledge representation (KR) technology with image understanding
technology.  VEIL to developed a more declarative approach to the construction of
vision systems and produced a tool that incorporates that methodology. Systems
were constructed in a more principled fashion that made it possible to share and
reuse software across systems. Experiments in two main areas were carried out.
We first demonstrated the utility of using Loom as a software engineering tool
for a specific vision application (runway detection).  We also demonstrated the
benefits Loom provides for image understanding itself (event detetion).

The major innovations in this work are as follows:

1)  applied a methodology that maximizes use of declarative knowledge (as
opposed to procedural knowledge) in vision systems, thereby enabling us to apply
modern software development techniques.  The criteria for recognizing objects
was stated explicitly in a formal language (instead of being buried in code) making
it easier to understand and maintain an application and keep it consistent.
Extending the recognition capabilities of the software was made easier.

2)  use of this declarative system construction methodology to facilitate the
process of integrating high-level vision routines (such as for recognizing
sequences of scenes) with low-level routines that recognize picture elements.

3)  enabling interaction with the system at a level of abstraction appropriate
to the domain task.  This includes associating collateral information with the
objects recognized by low-level image understanding programs.

4)  development of a foundation for a vision ontology.

This work leveraged off the Loom Knowledge Representation system.  Loom
captures the best features of object-oriented programming, data-driven
programming, problem solving, and constraint programming, through the use of
an underlying  logic-based representation scheme.  This system is a powerful tool
that incorporates very strong, frame-based representation capabilities, explicit
term subsumption, and a number of powerful reasoning paradigms (including
logical deduction, object-oriented methods, and production rules). Loom also
provides knowledge representation integrity through consistency checking, and
provides truth maintenance. Infusing these facilities into the vision problem
area, where strong KR capabilities have not yet been developed will significantly
alter and improve the methodology for the construction of vision systems. We
also developed spatial and temporal reasoning capacities (critical for vision), along
with mechanisms to exercise flexible control strategies and incremental scene
processing.  Finally, Loom was interfaced to a variety of vision processing
elements to provide a new tool of extended capabilities. The net result is a
powerful software environment for the development of vision systems.
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Part I.

Introduction and Background

1. Introduction

VEIL was implmentented and tested in the area of aerial  photointerpretation.
The application makes use of high-level reasoning and  knowledge representation
facilities provided by the Loom system to produce more capable  implementations
than is possible without such facilities.  This application is interesting and useful
in its own right, and  complements other related research programs funded by
DARPA.  Experience with  the application has validated the VEIL methodology
and provides  guidelines on how other applications may be implemented in VEIL.

VEIL addressed the need to incorporate strong knowledge representation
capability within computer vision systems.  Many previous approaches to image
understanding addressed the need for  knowledge representation, but none took
full advantage of the  strong technology that had been built up in this area over
the past decade for  other areas of AI.  At the same time, traditional knowledge
representation  research had not paid particular attention to the unique demands
that would be  required for successful application of knowledge representation
technology to the demanding computer vision problem.  We adapted the Loom
Knowledge Representation System to computer vision needs.  The research
focused on integrating advanced knowledge representation (KR) technology with
appropriate image understanding technology to develop a substantive and unique
tool, called VEIL (for Vision Environment Integrating Loom), for generation of
vision systems.

The Loom system supports the construction and maintenance of “model-based”
applications—Loom’s model specification language facilitated the specification of
explicit, detailed domain models.  Its underlying knowledge representation system
provided powerful built-in tools for reasoning with domain models, and it
provided a variety of services for editing, validating, and querying the structure
of Loom models. Vision applications benefited from adopting a more declarative
approach to software specification in three different ways, all of which were
gained by using a system like Loom:

1)  The use of explicit, declarative knowledge structures, which made an
application easier to debug and maintain.  For example, the object recognition
procedures encoded in a vision application were easier to identify, comprehend,
and explain when they were phrased in a declarative rather than a procedural
language.

2)  The implementation of symbolic computation, which played an
increasingly important role at the higher levels of vision processing.  At these
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levels, significant leverage was obtained by using Loom’s deductive reasoning
facilities.

3)  Finally,  by declaratively specifying modules within a vision application
that were easier to share and reuse.  The use of declarative models served as a
complement to evolution towards standards such as the Image Understanding
Environment (IUE).

2. Background

Image understanding programs often incorporate a number of representations
that were amenable to  representation in a general KR formalism.  However, due
to the need to represent many  other objects outside a formal KR system, image
understanding systems generally used ad hoc methods at all levels of
representation, thereby failing to  take advantage of the strong capabilities that
had been developed for this kind  of technology in systems such as Loom.  In  the
vision context, Loom provides control mechanisms for  reasoning and a means of
representing scene knowledge.

Loom incorporated previous and current research in knowledge representation
and inference technology into a system designed to be used  directly by
applications programs.  Loom was a continuously evolving system—each release of
Loom supported additional reasoning capabilities, and for  the past several years a
new version of Loom was released approximately once every year.  Loom has been
distributed to over 80 universities and corporations.

The functionality, in terms of representational and  inferential power, that Loom
made available to users exceeded that delivered by current-generation expert
system shells, while the inference technology represented by Loom's description
classifier had no analog  in that technology.  A key feature of Loom was the
high-level of  integration between its various embedded inference  technologies,
as demonstrated by the fact that typical Loom applications made  use of three
distinct programming paradigms (data-driven, object-oriented,  and logic
programming).  Because Loom supports a more declarative style  of programming,
applications constructed using Loom have been easier  to debug, maintain,
explain, and extend than those based on  that current-generation  technology.
These benefits were derived partly from the inherent  nature of the language,
and partly from the powerful support tools that the  language made possible.

Within image understanding applications, such as aerial image  analysis and
vehicle navigation, many different kinds of basic objects are extracted from the
image.  These included image pixels (intensity, color, or  range), individual edge
elements from intensity or range images, connected edge  elements, line segment
approximations to the connected edges, edge-based  contours, connected regions,
surfaces, collections of regions or surfaces, and  collections of other basic objects.
All of these descriptions may have also had information regarding the viewing
position or time for a sequence of data.  Some of  these were derived from other
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representations in the list and were possibly linked  to each other by spatial or
semantic relationships.  

Many of these object descriptions represented well-defined image  structures
with well-defined extraction techniques, and were not usually  represented in the
same terms that were used by knowledge representation systems.  Nor was it
desired that such a system as Loom attempt to embody every kind of  object.
Rather, the interest in a formal KR technique was for the power it brings to bear
on the middle and high levels of image analysis, not the very low  levels.  For
example, in the earlier aerial analysis system developed at  USC/IRIS [Huertas
90], extraction of runway structures proceeded in a direct  fashion from edge
detection and line segment formation through extraction and  verification of
runway rectangles.  These early stages of analysis were time  consuming and
entailed processing many (50,000+) basic elements to find the  candidate
structures.  The techniques used were highly specialized processes which  Loom
could not improve upon.  However, when further analysis of the aerial image was
undertaken to extract higher levels of potential structure (e.g., taxiways,
buildings, airplanes), using models of these same structures (via Loom's
representation system), along with Loom’s powerful reasoning capabilities, offered
a new disciplined approach to handling this phase of the recognition  problem,
which constituted a marked improvement upon the then existing techniques.  
Thus, the VEIL system was able to combine the data-driven geometric  reasoning
modules specified above with model-driven symbolic reasoning tasks  under a
single programming environment to produce a more powerful tool than  either
system could have provided alone.

An additional problem with previous systems was that even when  high-level
knowledge was used, much of the information about the structure of the  scene
was embedded in the programs implementing the extraction (procedural
knowledge representation) rather than in a declarative form.  This made any
changes and  addition of knowledge for domains difficult.  The Loom KR system
increased the amount of declarative knowledge representation that could be done,
thereby alleviating the problem.

2.1 Other Related Work.

There have been several attempts to develop high-level  reasoning systems for
image understanding.  Three such systems, described below,  are: SPAM
developed by McKeown and his colleagues at CMU [McKeown 89]; VISIONS
developed by Hanson, Riseman and colleagues at University of Massachusetts
[Draper  89]; and ICC [Silberberg 87] developed at Hughes Research Labs.  We
believe  that all of these systems suffered from the major drawback that they
forced  one to commit oneself to developing large vision systems with a single
inference engine, whereas there were and are many tasks in vision better handled
by  different control structures.  The Loom knowledge representation system
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allowed  the system designer to combine various control/knowledge representation
paradigms in an explicit fashion.  

SPAM was developed for and had been applied to aerial image  analysis
applications. It was basically a rule-based system implemented  in OPS5.  It
processed a given image in the following phases: segmentation,  class
interpretation (of segmented regions), fragment  interpretation, functional area
analysis and finally, model generation and evaluation.  Some  interaction between
different phases was possible.  SPAM handled the  demands of low level and high
level analysis and handled the large data  accompanying aerial images.  We
evaluated the drawbacks of SPAM to be in specific commitments to the manner
in which images must be analyzed, and in largely procedural  representations of
knowledge, which obscured the control knowledge any designer  wishes to express
in this system.  Under Loom, the problem solving strategy was  explicit and easily
modified to allow the designer to experiment with  different structures.  

VISIONS was essentially a “schema” or “frame” based system.   Knowledge about
each object was encoded in a schema, which was specialized to  find an instance of
this object.  Schema instances communicated with each other via  a global
blackboard.  This architecture had some advantages for  parallel implementation.
VISIONS was a very general purpose system that could, at least  in principle, be
applied to a variety of domains.  In VISIONS, the knowledge  representation was
primarily procedural and many of the schemas needed to be about  intermediate
objects for which we had no intuition.

The ICC system had been used to represent and apply high level  domain
knowledge to target detection.  An object was modeled, using frames,  according
to its 2D appearance in the image using collections of regions and lines, taking
into account spatial,  temporal, and contextual knowledge.  A  semantic network
was used to represent a limited amount of relationships between  objects.  The
image features were represented in the Symbolic Pixel Array [Payton  84] which
allowed efficient retrieval of pixel and object properties and object  spatial
relationships.  The analysis, which was both bottom-up and  top-down, followed
the hypothesize and verify paradigm; when an object was  hypothesized, it
gathered information for its slots which provided evidence for or  against the
hypothesis.  A confidence measure for a hypothesis was computed  based on the
degree of belief and disbelief provided by the evidence.  The  declarative nature
of the modeling in ICC was analogous to representation  in Loom.  There were at
least two problems in ICC: first, the search strategy  in ICC was computationally
intensive for large numbers of scene objects,  and second, the semantic network
representation in ICC was limited.  

Our objective in VEIL was to build a system that allowed for  more declarative
knowledge representation, where the generic vision processing  (such as some of
the geometric reasoning) was separated from the domain  knowledge.  In addition,
it provided multiple reasoning techniques, something which  was particularly
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appropriate for machine vision.  We believed that these  attributes were missing
in the previous systems such as SPAM, VISIONS, and ICC, and  were of great
advantage for programming, in general, and image  understanding, in particular

By encouraging users to represent significant portions of  their vision applications
in VEIL, we made available to them a large  variety of features (including term
subsumption reasoning [MacGregor 90b], role  hierarchies, multiple knowledge
bases, etc.) that were absent in the frame  systems found in existing vision
processing systems.

2.2 Overview of Loom Capabilities.

Loom [MacGregor and Bates 1987, Brill 1993] provides a very expressive domain
modelling language, an integrated suite of deductive reasoners (for performing
general symbolic processing), and an environment for creating, editing, viewing,
and saving knowledge base objects.

Loom has an immediate means for representing  non-spatial properties of object
models and model instances.  For the vision domain,  Loom was to be extended by
adding spatial representations for two and three  dimensions.  The extension
included specialized procedures to compute  spatial properties such as what
objects were located at a pixel or at a location  in the world, and how objects were
located with respect to one another.   Frequently, the answer to a spatial question
posed at the symbolic level was computed by descending a level down and
performing computations with the more detailed  spatial structures that
inhabited that lower level.

The Loom system provides a powerful set of tools for formally  defining the
vocabulary and operations that applied to an application domain.   Terms defined
in Loom were automatically checked for consistency.  Unlike the  more primitive
database notion of a “view relation,” which could only be used  within database
queries, a Loom term defined a concept that could be used within  assertions as
well as within queries.  Once defined, a term could be used  throughout a Loom-
based application to promote the uniformity and  conciseness of expressions that
accessed the knowledge base.  Loom’s term definition  facility was key to deriving
an ontology that could be shared across multiple  applications, as described below.

Concurrent Loom development resulted  in new  extensions to the system, and a
support environment for Loom  enhance d its  usability.  Contexts were added
and expanded in Loom in order to support VEIL reasoning.  In particular, contexts
were made into first class objects with the ability to make assertions.  This made
the use of contexts as a representation for individual images more convenient and
allowed the rapid development of an event detection capability.  A Web-based
support  environment for Loom called Ontosaurus was recently released that
contains tools to facilitate  browsing, querying, and editing Loom knowledge bases.
Tools exist that enable Loom to retrieve data stored in a relational DBMS, and
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future plans call for interfacing Loom’s successor to a persistent object storage
system.

2.3 Research Plan

Our plan of work was straightforward.  We developed a  new vision programming
environment tool, VEIL, that integrated powerful knowledge representation
capabilities with useful vision processing techniques.  To accomplish this end, we
used the Loom knowledge representation system as a basis, extended it for
application to vision system problems,  incorporated vision processing algorithms,
and applied the resulting tool to two  image understanding problems to
demonstrate its utility.  Since efficiency was such  a major issue for vision
systems, we also evaluated the resulting system  and improved performance
where indicated.  It was our view that the  resulting system would offer major
new capabilities to declaratively model vision  problems, apply new kinds of
reasoning to the vision problem, and to make the  construction and maintenance
of vision systems easier and more cost effective.

The research was conducted in two phases.  The  first phase demonstrated the
utility of Loom as a  high-level mechanism which could provide a much needed
facility for knowledge  representation within the image understanding (IU)
domain.  Following successful demonstration of the utility of Loom for this
purpose, we undertook development of additional capabilities for Loom which
addressed the particular requirements of the IU domain.  These new capabilities
were demonstrated on a slightly different problem than that used for the basic
effort.  We describe the basic effort  immediately below.  These two phases are
described separately in Parts II and III of this report.

2.3.1 Using Loom in an Existing Image Program.

Our objective was to explore how Loom applies to programs used in the computer
vision problem domain.  We chose the runway detection and analysis task since
we already had a “hard coded” version of the program, we had experience  in
helping with the transfer of this application to a Prolog based system, and  this
program operated at several different levels of analysis (low-level  image analysis
and higher-level geometric reasoning).

This runway detection system has grown and developed over a number of years,
but it has not been easy to modify it to work on different problem domains,  or to
extend it in the current domain.  This failure is due partly to the lack  of
general knowledge representation and reasoning capabilities which  would allow a
better separation of the knowledge about airports used in the  analysis and the
programs that implement the analysis.

Vision techniques, such as line finding, segmentation, perceptual grouping, and
3-D shape descriptions, were integrated with the Loom system.  To accomplish
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this goal, we had to  discover methods of tying the reasoning provided by Loom to
mid- and low-level processing techniques that were common in the vision
community.  Finally, we developed incremental control strategies  designed to
reason about specific objects or regions within an overall scene so  that objects of
high interest could be rapidly recognized.

The low-level processing (e.g. edge and segment extraction, initial grouping) did
not benefit from the general representation and reasoning schemes of Loom and
remained in Lisp.  The higher-level analysis was better suited to using reasoning
and representations available in Loom.  These included the reasoning about where
to look for other airport structures given the initial runway locations, analysis of
connections between these structures, and a more general description and analysis
of the markings on the runways.  Given this reasoning, we approached  the use of
Loom in an incremental fashion by first developing the higher-level analysis and
knowledge in Loom and only later moving the use of Loom to the middle and
lower level processing.  Having these capabilities at all three levels then allowed
us to incorporate feedback mechanisms that explored the images for further
evidence and  process portions of images at higher resolutions.

2.3.2 Using Loom to Solve Domain Problems.

Loom had already provided powerful representation and multiple reasoners such
as logical deduction, object-oriented methods, and rule production.  Loom was
developed for more traditional AI problems and does not have some of the
capabilities  required for computer vision, such as a geometric reasoning
capability, thus a part  of the experiment identified the current limitations and
developed techniques to address them.

For VEIL the following capabilities were added to Loom: spatial representation and
reasoning; flexible control of instance recognition and classification; and
incremental scene processing.  In the area of spatial reasoning we added new
constructs for representing  such notions as coordinate location (2-D and 3-D),
regions, distances, and  nearness and adjacency relationships.  Furthermore, we
integrated the high-level representation of  Loom with visual recognition
processes exploiting geometrical and/or functional  descriptions of physical
objects.  The method we used is similar to the technique used by Haarslev
[Haarslev et al., 1994].

Spatial Reasoning.  As discussed above, VEIL implemented multiple spatial
reasoning algorithms designed to process both high and low levels of spatial
representations.  The spatial reasoner for top level (symbolic) knowledge was
handles relatively general, declarative representations of spatial knowledge.  The
lower-level processing was  performed by one or more special-purpose algorithms
already developed for other vision  processing systems (e.g., [Payton 84]).  One of
our tasks was to  write a query translator to transform symbolic spatial queries
into  equivalent queries  on the lower level knowledge structures.
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For our vision applications, we expected that most symbolic spatial knowledge
would be created through the process of abstracting lower level spatial
representations.  One of our tasks was to implement a VEIL component to perform
such abstractions.  Thus, the system would have the  option of answering queries
either by translating symbolic level queries into  lower level queries, or by
abstracting relevant spatial knowledge into the symbolic level, and then
processing the query at that level.  The latter method left  the system with the
option of saving (caching) the abstracted knowledge,  One example of this involves
the use of a declarative description of a convoy as “a group of vehicles located on
a road.”  Once a particular group of vehicles is recognized as being a ocnvoy,
further queries and processing no longer needs to reference the low-level objects
that make up that convoy.

Our architecture overlayed a declarative spatial representation on top of a highly
optimized spatial reasoner  that used specialized representation structures tuned
to the needs of  high performance algorithms.  If the vision processing
community achieves  standardization of data structures and algorithms for
representing and reasoning  with spatial knowledge during this contract, we will
investigate the  possibility of converting our architecture to match that standard.
Placing a  high level layer of reasoning above such a standard would yield a
means for  delivering high performance spatial reasoning to a relatively wide
community  of users.  It also allowed us to develop a capability to detect events,
which are sequences of images with domain importance.  Armored movements
and field training exercises are examples of such domain-level events.

Temporal Reasoning.  Detecting events meant that capability for representing
and  reasoning with temporal knowledge was needed.  We used the context
mechanism added in Loom version 3.0 in order to implement a snapshot temporal
model.  This provided a natural representation for a series of images taken at
different times.  For monitoring a given site for changes, we were also able to
exploit the hierarchical nature of Loom contexts to allow a shared background
model.  This “site model” provides a single, shared repository for information
that does not vary with time.  Most of the buildings and terrain can thus be
shared among all of the individual “image models.”  The individual image models
allowed the tracking of the positions of vehicles as they moved from one image to
another.  The ability to create queries that spanned several images made the
construction of an event detector straightforward.

Enhanced Understandability.  In addition to guiding the system, the use of a
declarative  domain model (particularly one expressed in Loom) has other benefits
as well.  Declarative representations of knowledge are in general easier for a
human to  understand than procedural representations, since all  knowledge is
explicit.  Also, inferences derived from a base of declarative knowledge are
explainable—a relatively  straightforward  derivation of support had to exist for
each derivable fact.   Practical  benefits were that declaratively represented
portions of a program were in general  easier to debug and maintain (because they
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were modular and explainable),  easier to extend (because of their modularity),
and easier to share and reuse  (because declarative representations reduce the use
of clever or obscure encodings of knowledge).  For these reasons, it was desirable
that significant portions of an application be represented declaratively.

2.4 Application Domain.

In order to provide operational feedback, and to evaluate the success of our
endeavors, we applied the evolving tool to a common vision domain, namely the
photointerpretation of aerial  imagery.  This domain is of vital importance to the
military and contained a rich variety of objects, both man-made (buildings,
transportation networks, power transmission lines, and pipelines) and natural.
Most of  the objects are stationary but mobile objects are also present.  The test
domain is explained in more detail later.

The domain of aerial images contained a rich variety of  man-made and natural
objects.  Major man-made objects included buildings,  transportation networks
(roads, railroads, runways etc.), power transmission lines,  and pipelines.  Most of
these objects were stationary and changed slowly, but  important mobile objects
were also present (trucks, cars and airplanes).  The  images also contained natural
terrain and vegetation.  Some of the objects  were very large with complex
structures, while others were very small.

Typical aerial images were of “natural” scenes, where neither  the illumination
nor the nature of the observed surfaces could be easily  controlled.  This implied
that, not only was the domain complex, but also the signal  that we had to start
with was far from ideal; usually, low level algorithms produce  segmentations
that differ significantly from the desired result.  This  richness and complexity
made the task of aerial image analysis extremely  challenging.

3. Report Organization

A detailed report of the application of Loom to the development and extension of
an existing program for runway detection is described in Part II of this report.
The application of Loom to the problem of integrating higher-level knowledge
and detecting semantically meaningful events is described in Part III.  Part IV
provides a summary.

Appendix A reports on related support work for the Image Understanding
Environment (IUE).  This work was also performed as part of the VEIL contract.
The Image Understanding Environment represents a major step towards the
introduction of sharable object oriented specifications into the vision domain. The
intended domains of the IUE and VEIL have some overlap, but the IUE explicitly
does not consider higher-level knowledge representation issues or reasoning
techniques.
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Part II.

 Loom Applied to the Implementation

 of Vision Systems.

The first part of the VEIL project focused on integrating advanced knowledge
representation technology (provided by Loom) with current image understanding
technology to develop advanced tools for the generation of vision systems. This
effort was aimed at eliminating a weakness in computer vision technology in the
realm of higher level representations.  The resulting hybrid system exhibits
improved shareability, maintainability and reusability of code for computer
vision systems.

4.  Software Engineering Experiment Overview

VEIL integrates advanced knowledge representation technology (as developed in
Loom) with image understanding technology to develop advanced tools for the
generation of vision systems.  The goal of this part of the project is to improve
capabilities in high level computer vision systems through the use of mature,
highly developed knowledge representation and reasoning techniques.  We used
advanced knowledge representation for computer vision to improve shareability,
reuse and to simplify the development of high level vision programs.  We have
applied the Loom knowledge representation language to existing computer vision
programs with an improvement in readability and extensibility without a
substantial loss in execution time.

This experiment investigated the benefits available to vision applications
obtainable via the introduction of declarative programming techniques,
specifically, techniques available using advanced symbolic processing technology
found in a modern knowledge representation system. In typical vision applications
today, a programmer invents specialized data structures and carefully crafts a
suite of vision processing algorithms that exploit those data structures. The
result is most often a highly specialized piece of code that cannot be reused for a
different domain, or applied to applications other than the one originally
intended. The Image Understanding Environment [Mundy et al. 1993] addresses
some of these issues, including sharing and reuse of basic data structures and
processing algorithms, but does not deal with higher level representation issues
that are the focus of this work.

The VEIL project aims to develop a technology whereby much of the work that
goes into the development of specialized vision processing modules results in
software that can be shared or reused by multiple applications. Knowledge
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representation techniques have been a part of computer vision research from the
beginning (for example see [Winston 1975, McKeown et al. 1985, Draper et al
1989]). One difference is that this project combines an existing powerful
knowledge representation system with relatively mature computer vision
programs and techniques. This project will form the basis for incorporating
knowledge representation technology in future computer vision research.

In order to study the knowledge representation issues directly, we transformed
an existing mature program for runway detection and analysis into one built
using the Loom system and declarative programming techniques. This strategy
has several advantages. First, we know that the algorithm works, and second, we
can directly explore the benefits of using knowledge representation technology.
This paper will discuss some of the issues of declarative programming, briefly
describe the airport analysis system, and present results of the effort in
incorporating knowledge representation in computer vision.

5.  Declarative Programming

Domain knowledge may be represented procedurally, as program code, or
declaratively. Declarative representations take many forms, but the distinction is
that the representation itself is not executable program code but is data used by
the program. A declarative specification provides a formal, semantically well-
founded description that offers numerous benefits. Such a specification is more
readable and easier to maintain and is subject to automatic validation and
verification techniques. The description uses a high-level language specification,
thus it does not rely on a specific choice of data structures. Algorithms are
specified by the heuristic rules they employ and/or the changes they effect
rather than by how they operate. Finally, the descriptions can be shared,
modified, and reused by other applications more easily than procedural
specifications.

The key approach in VEIL is the application of declarative programming
techniques to vision processing, leveraged by the reasoning capabilities of the
Loom knowledge representation system.  We use declarative descriptions for the
generic objects such as a runway and the markings on a runway to control the
processing of the data. We use Loom’s classification, query and production rule
capabilities to select the final objects from the scene. A declarative specification
of an application (or even a portion of an application) provides a formal,
semantically well-founded description that offers numerous benefits. Such a
specification

•  is more readable and easier to maintain than a procedurally-specified
program;

• is subject to automatic validation and verification techniques;
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• represents a high-level language specification. Thus, it does not rely on a
specific choice of data structures. Algorithms are specified by the heuristic
rules they employ and/or the changes they effect rather than by how they
operate;

• can be shared and reused by other applications.

6.  Airport Example

We developed a project to explore the use of standard knowledge representation
techniques in computer vision. The goals of the project include improvements in
both computer vision and knowledge representation techniques. To this end, we
started from a relatively mature application and incrementally changed the
program to replace procedural specifications of knowledge with declarative
representations of knowledge.

Detection and analysis of aerial views of airports provide the first application for
Loom.  This application defines primitive concepts for such objects as runways,
center stripes, blast pad markings, distance markings, and taxiways. [Huertas, et
al. 1990].  Each of these primitives is a long thin ribbon (represented as an image
feature called an apar), though the size and relations among them vary. Figure 1
shows the common markings for an instrument runway.
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Figure 1.  Standard Runway Markings for Instrument Runway.

Airports are described by a generic model: a collection of generic runways, which
are long thin ribbons with markings (smaller ribbons) in specific locations. Our
system locates potential runways through a sequence of filtering and grouping
operations followed by a hypothesis verification step. Since these are described in
detail in [Huertas et al 1990], we will give only a brief description of these
techniques in this report.

6.1  Runway Hypothesis Generation

The basic steps in finding runway hypotheses (which are also used for the
taxiway hypothesis generation) are described in the flow chart of Figure 2.
Runway generation begins by generating two sets of edges, stronger edges for the
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runways and weaker edges for the markings. These edges are grouped into
straight line segments and then grouped into anti-parallel pairs (ribbons, or
apars). The runway hypothesis generation then proceeds through a series of
filtering and grouping steps: Filter out contained apars, group apars sharing a
common segment, and group colinear apars across gaps. Twice, the results are
filtered to remove very short runway fragments (aspect ratio filtering). These
steps produce a reasonable number of hypotheses (e.g. 14) from the original set of
many ribbons (e.g. 18,000). The numbers of objects (i.e. 26,410 segments) are
taken from the Boston Logan International Airport example.  They are typical of
the numbers for other airports.

Canny Edge detector 
[Canny1986]  and Line 
Grouping
Mask size 9, Strength 10
26,410 Segments

Group Lines into Anti-parallel 
pairs (Apars)
[Nevatia and Babu 1980]
20 to 60 pixels wide
18,591 Apars

Find Dominant Directions
5,545 Apars in 3 directions

Eliminate Contained 
Apars(See Figure 3).
1,714 Apars

Join on common segment
Aspect Ratio Filter (1:1).
(See Figure 4)
551 Apars

Merge across Gaps and apply
Aspect Ratio Filter (10:1).
(See Figure 5).
14 Apars

Canny  and Line Grouping
Mask size 7, Strength 8
57,882 Segments

Group Lines into Anti-parallel 
pairs (Apars)
1 to 12 pixels wide
18,424 Apars

Runway Verification
4 Verified

Input
Image

Figure 2.  Runway Detection Algorithm.
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The details of the algorithm are described below.

• Generate edges using e.g., the Canny edge detector [Canny 1986]. Find
connected sequences of edge elements and form straight line segments from
these curves [Nevatia and Babu 1980]. Two sets of edges and line segments
are generated, one with a relatively large mask (size of 9) and high threshold
(strength of 10) for runway hypotheses and the other with a smaller mask
(size of 7) and lower thresholds (8) for markings. These result in 25,000-
90,000 line segments for typical images.

• Group straight line segments into anti-parallel pairs (that indicate ribbons),
called apars. These pairs are limited by width (one set for markings is
narrow, about 1 to 12 pixels, and the other set for potential runways is
much wider, around 20 to 60 pixels). These widths are based on very rough
approximations of the image scale and the generic description of the possible
runways (which have defined limits on widths) and markings (which have
very specific widths). The program generates 18,000 to 35,000 apars for
the images.

• Find dominant directions using a histogram of apar directions. The apar is
weighted by its length in the histogram accumulation. The histogram should
have a few very dominant peaks, which correspond to runway directions.
The later processing is applied to selected apars for one direction at a time
(except for taxiways) which greatly reduces the computation time. Similar
histogram analysis on widths could be used to further restrict the valid
runway widths, but is not needed. This reduces the set of apars from
18,000 to 1,000 to 3,000 for airports with runways in multiple directions
(Boston, Figure 3).  The reduction in numbers is similar for other examples,
but much less pronounced for airports with all runways in the same
direction (Los Angeles, Figure 3).

Figure 3.  Boston and Los Angeles Airports.
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• Eliminate apars contained within larger ones. This noise-cleaning step
reduces the number of elements to analyze. The extra apars, which are
eliminated, have many causes, but most are caused by the markings (i.e. an
apar formed by the two sides of the runway, and two more formed by the
side and the center stripe). Figure 4 illustrates this operation. Typically,
about one-third of the apars survive this filtering.

Figure 4.  Eliminate Contained APars.

• Join apars that share a common line segment. These breaks in large apars are
caused by a gap on one side. This operation maintains colinearity (since the
line segment is straight) and creates new merged fragments that were not in
the original image data. After this step, reapply the previous step to
eliminate contained apars. Figure 5 shows how this operation works,
reducing the total number of apars by about 10% to 15%. At this point a
filtering on aspect ratio is applied to remove very short hypotheses from
further consideration (ratio of length to width less than 1). This removes
about half of the remaining hypotheses (with about 150 to 250 remaining).

Figure 5.  Join Common Segments.

• Merge colinear apars across gaps. The gaps are formed by missing edge and
apar data, by actual crossing runways or other occlusions. This step also
creates new merged fragments. The gap must be analyzed to determine if
the merger is valid (e.g. taxiways do not cross runways). This step has the
potential for serious errors if the allowed gaps are too large (or too small) and
if the definition of colinear allows the hypothesis direction to drift. Figure 6
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shows this operation. This reduces the total number of fragments to roughly
two-thirds of the previous number. A second aspect ratio filtering (greater
than 10) is applied here to get the final hypotheses (for the Boston image 4
or 5 remain for each of the three directions).

Figure 6.  Merge Colinear Apars Across Gaps

These filtering operations depend only on a generic description of the runway and
are all relatively efficient operations given the right data structures (especially
spatial index). In the original reports on this effort, the run times were very
large. Most of the reduction came from using data structures such as the spatial
index to greatly reduce searches through the data.

6.2  Runway Hypothesis Verification

The verification step requires analyzing the hypotheses to find the specific
markings. Figure 1 illustrates the markings for an instrument runway. The
dimensions and spacings are given in feet. Each marking would appear in the
image as an apar of a specific size (e.g. 30 feet wide and 150 feet long). Using an
initial scale gives the size range for each marking apar, an indication of its
position relative to other markings and relative to the runway hypothesis.
Knowledge representation systems do not currently support spatial reasoning for
searches so the details of the search fall on the image analysis system.

First the true ends of the runways must be located. The positions of the
markings on the runway are well defined once the true end of the runway is
known. But, the hypothesized end of the runway is not always the true end due
to errors in the input or extensions of the paved runway surface. The true ends
of the runway are indicated by the threshold marks (top left of Figure 4). Rather
than find the marks themselves, it is easier to find the apar in the center of the
runway formed by the gap between the two marks. The threshold mark is
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located by searching along the center line of the runway hypothesis to find the
relatively dark apar of this gap. Once the threshold mark is found the other
distance marks are located relative to it. Each mark is located by looking for
apars in the appropriate locations and selecting according to the description of
the marking.

At this stage in processing, the image scale is approximately known but the
program does not assume it has the exact scale or the exact position of the
threshold marks. Furthermore, in the original edge and feature extraction, the
larger marks are often broken into shorter apars. Therefore the extraction allows
for a considerable tolerance in the location (especially along the runway) and size
of the marks (especially the length). The initial set of markings is used to refine
the scale and then to filter out other markings in incorrect positions.

Center lines and side stripes are found by looking for marks in specific locations
relative to the runway hypothesis (in the center, along either side). Both of these
are very narrow (roughly 1 pixel) so they tend to break up into many small
pieces.

6.3  Refinement of Hypotheses

The initial markings are located using the large set of apars generated by the
global edge detection process at the beginning.  This is sufficient for finding well-
defined markings, but some runway markings are missed due to errors in the
anticipated position, errors in the edge detection, the thresholds used for the
edge detection, or because they are very low contrast in the image. Furthermore,
the markings are near the image resolution limit with widths of one or two pixels
for the smaller markings.  All of these problems are countered by the refinement
steps.

More markings are located by reapplying the edge, line and apar finding
procedures on small windows (50 by 50 pixels) of the image with very low
thresholds and using a replicated version of the image so that small marks can be
readily found.  Also, by using the locations of previously found markings, the
image scale can be determined more precisely and the expected location of the
new marks can be specified more exactly (i.e. relative to other established
markings).  The same processing used to evaluate candidates for the original set is
used for the refinement, except that the input is taken from the data extracted
in the window in the image rather than taken from the globally extracted
features.  Descriptions of the size and location of marks are used to rule out
candidates and to determine if the extracted apars are appropriate.  Loom
provides support for the creation and use of such descriptions.  This was
exploited in the new implementation.

Additional refinements include merging the many side stripe fragments using the
same procedure used for runway hypotheses, which reduces the number of
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individual side stripe fragments to one-tenth of the original numbers. The
updated scale information is also used to eliminate distance marks that were
within the original ranges, but are not close enough when the scale is known
more accurately.

In the initial implementation, all the size and position information was specified
directly in the extraction and analysis procedures. The first part of this project
rewrote these procedures to use Loom to describe the markings (sizes, relative
positions and position on the runway). This simplified the implementation (by
reducing the number of procedures) and moved all the descriptions into a more
understandable form (i.e. the Loom descriptions). Figure 5 gives the Loom
description for big distance marks (called this by the program because of the
physical size of the marking). From this, we know that a big-distance mark is a
type of generic-mark (which in turn has several roles (or slots)). We also know the
distance between this marking and other marks and the spacing (across the
runway) between pairs of big distance marks. This shows the basic properties of
the marking and the relations between it and other markings. Some properties
and relations could be described as relations to the underlying runway
hypothesis, but these geometric relationships would require extensions to Loom.

7.  Using Knowledge Representation

Through the initial hypothesis generation and initial verification, there is little
use of any high level knowledge representation techniques. For this basic
analysis, Loom concepts are used to:

• describe the elementary objects, such as the runway length and width, the
types and shapes of the markings;

• describe the constraints on objects, such as the required distance between
various types of markings, or the number and kinds of markings that must
be located. An example of big distance marks is given in Figure 7;

(tell (create big-distance generic-mark)
      (about big-distance
          (width-in-feet 30)
          (length-in-feet 150)
          (distance-between touchdown 500)
          (distance-between small-distance)
          (distance-between threshold 1000) )
          (spacing-between 102)))

Figure 7.  Big Distance Mark Description

• describe different classes of runways based on quantitative (and qualitative)
differences in the set of markings. These are illustrated by Figure 8, which
shows several basic runway types;
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(defconcept A-Runway
   :roles (runway-object))

(defconcept A-Runway-Taxi
   :is (and A-Runway
            (at-least 4 has-center-line-mark)
            (at-least 2 has-side-stripe-mark)))

(defconcept Potential-Runway
   :is (and A-Runway-Taxi
            (at-least 1 has-threshold-mark)
            (at-least 1 has-touchdown-mark)
            (at-least 1 has-small-distance-mark)
            (at-least 1 has-big-distance-mark)))

• and describe different quality classes based on the presence of recognized
image features (markings) on the runway.  Figure 9 shows the description of
a good runway, one that is clearly identified.

(defconcept Good-Begin-Runway
   :is (and Potential-Runway
            (at-least 1 has-threshold-mark Begin-Mark)
            (at-least 1 has-touchdown-mark Begin-Mark)
            (at-least 1 has-big-distance-mark Begin-Mark)
            (at-least 2 has-small-distance-mark Begin-Mark)))

(defconcept Good-End-Runway
   :is (and Potential-Runway
            (at-least 1 has-threshold-mark End-Mark)
            (at-least 1 has-touchdown-mark End-Mark)
            (at-least 1 has-big-distance-mark End-Mark)
            (at-least 2 has-small-distance-mark End-Mark)))

(defconcept Good-Runway
   :is (and Good-Begin-Runway Good-End-Runway))

The use of Loom knowledge representation capabilities for the runway models,
the marking models, the descriptions of the extracted runways, and for the
evaluation of the extracted runways contributes to the simplification of the
resulting program. Since we were starting with an existing program for the task
we are able to compare the differences in procedural embedding of domain
knowledge and declarative representation of that same knowledge.

7.1 Representation Aspects

In the initial implementation, all the size and position information was specified
explicitly in the extraction and analysis procedures. The first part of this project
rewrote these procedures to use Loom to describe the markings (sizes, relative
positions and position on the runway). This simplified the implementation (by

Figure 8.  Basic Runway Concept Definitions

Figure 9.  Good Runway Concept Definitions
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reducing the number of procedures to one from one for each marking) and moved
all the descriptions into a more understandable form (i.e. the Loom descriptions).
Some of these advantages are available using standard data structures, but these
are not well suited for global data structures and general queries to extract
values.

 In the description in Figure 7 for big distance marks (so called by the program
because of the physical size of the marking) we see that a big-distance mark is a
type of generic-mark, which in turn has several roles (or slots). We also see the
distance between this marking and others and the spacing (i.e. across the runway)
between pairs of big distance marks. The marking concepts contain the basic
properties and the relations between markings. To describe the position
properties and relations relative to the underlying runway hypothesis would
require extensions to Loom to handle geometric relationships and uncertainty.

For our application, moving basic descriptions of this type out of the procedural
representations (in this case Lisp procedures) into the declarative specification
(i.e. Loom) simplified the implementation. The descriptions are explicitly
represented by the Loom concepts and thus can be used by all procedures in the
analysis. Although some of the same advantages can be obtained by using
appropriate data structures directly in Lisp, Loom provides both the
programming style and the retrieval mechanisms that simplify the
implementation. In this application, the three original procedures for each
separate distance marking (plus three more used for the refinement step) were
replaced by a single procedure for all markings (and this procedure is roughly
the same size as each of the previous individual ones).

Two advantages of declarative descriptions are shareability and reuse. The
descriptions used here are still specific to the problem domain so they are not
easily shared with other applications. The declarative descriptions were easier to
modify and extend than the procedural specifications so that extensions of
marking refinement to cover all markings was trivial, once it was implemented
for one of them.

7.2  Reasoning Aspects

In the earlier implementation, the refinement operations and final runway
selection were controlled directly by the user. By using Loom reasoning and
retrieval mechanisms it is possible to automatically choose which runway
hypothesis and which markings need more analysis. Thus runways with extra
markings (along with the markings themselves) can be selected or missing
markings can be indicated by the retrieval mechanisms rather than by
procedures that examine all options. This query mechanism is used to select
which runways analyze further to clean up extra marks or find more.
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The Loom production rule facility offers a modular means for defining such
things as the heuristics that implement object detectors. When conditions
specified by a production rule are met, the rule is executed, thus allowing
options for alternative control of the processing.  At this time, we have not
implemented significant production rules in the program, but it would be easy to
use rules that trigger on the detection of potential runways that are not yet
recognized as good.  Such rules would then direct the low-level image analysis
routines to expend more effort looking for the missing items.  This would provide
a global expectation-driven flow of control.

The declarative specification makes dependencies in descriptions and
interpretations explicit rather than keeping them hidden. These dependencies
are more than the inheritance of object descriptions (as in CLOS or C++) since a
potential runway becomes a good runway by virtue of changes and additions to its
associated descriptive markings rather than changes in the object class.  The
Loom constraint checker computes whether a hypothesis generated by an object
detector satisfies a set of domain constraints.  These changes are also recognized
by Loom production rules.  They can fire when a runway of a given
interpretation is recognized — i.e., when enough markings are identified.

8. Status and Results

The implemented system generates runway hypotheses and verifies them by
location markings found from the initial set of potential markings (i.e. the thin
apars).  It also applies initial filtering to the hypotheses (based on whether any
appropriate markings are found).  Further automatic refinements include finding
more distance marks, verifying the threshold mark (which delineates the end of
the runway), finding more center and side stripes, and updating the image scale
(i.e. feet per pixel).  The execution times are roughly a minute (Sun Sparc 10) to
compute the initial hypothesis and the initial set of markings.  The time
required for the computation of initial apars or even reading them in to the
program is greater than the time used for hypothesis generation and verification.
The refinement times depend on how many new markings must be found (and
especially on side stripe and center lines since these require a search along the
length of the hypothesis), but each subwindow (window selection, edge detection,
apar extraction, evaluation, display) requires 2-3 seconds.  Because Loom accesses
are used through the program, it is impossible to separate out execution costs,
but execution time is dominated by the basic image feature extraction and
grouping processes.

As an example of our results, we show the selected runways from the Boston
image in Figure 10.  All 4 runways are classified as excellent (i.e. better than the
good runway of Figure 9).  Both ends of all runways are in the image, but the
borders are cut off in this display.  This image is the easiest in our set of images
and all the runways are found clearly.  The additional very short runway is not
indicated since it does not have the distance marks.
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Figure 10.  Boston: Excellent Runways

Figure 11.  Los Angeles:  Selected Runways
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Figure 11 shows the selected runways for one of the images for Los Angeles. The
left side of the bottom two runways is not in the image so these have possible
valid markings on only one end. The markings themselves are not as clear as for
Boston and, overall, fewer are found.

The results for the initial (non-Loom) version of the program were not as
complete.  Since the refinement steps were difficult to run, they were never
completed.  The declarative representations made this possible.  Additionally, in
the current version we introduced the use of a general spatial index for many of
the spatial operations that changed the computation from one best described as
taking days to one taking minutes. In terms of computation time, this change was
more important than any improvements in speeds of machines used for the
project.

9. Future Directions

The work on runway analysis is completed but we will be applying general
knowledge representation techniques to other application domains in our general
research work. The major areas of future work are:

• extending the use of Loom to “lower” levels of the vision processing to see
where the computation is overwhelmed by the volume of image features;

• applying techniques similar to those used in the runway program to
building extraction and analysis (this adds three-dimensional reasoning issues
to the problem domain);

• applying Loom to higher level problems in vision such as reasoning about
changes in the image using the objects (i.e. buildings) extracted by other
processing.  This is addressed in the next part of this report, describing the
application of Loom to domain reasoning.

• extending Loom to directly handle spatial concepts used by computer
vision algorithms.

Loom is a general purpose symbolic reasoner. Loom’s strong point is reasoning
about domain facts and recognizing instances based on those facts. The visual
recognition tasks that VEIL undertakes involve searching for evidence of the
existence of features known to exist (i.e. runways and their markings). This
involves reasoning by reference to a prototype of a runway. Loom could be
enhanced by the addition of support for reasoning with concept prototypes. This
enhancement would not only benefit VEIL, but would be useful in many other
domains as well.
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Part III.

 Loom Applied to Domain Reasoning

The second part of the VEIL effort pioneered two thrusts within the field of
image understanding that until now have received relatively little attention.
First, VEIL reasons at a semantic level about scene information. A knowledge base
augments an original image understanding (IU) model (representing the output of
a lower level IU system) with structural and functional information. VEIL can
apply both spatial and temporal reasoning to detect event sequences that span
multiple images. Second, VEIL provides users with an intelligent interface that
relies on a library of domain-specific terms and queries to provide a domain-
specific browsing and query facility. The library is implemented as an extensible
collection of domain specific definitions and queries in the Loom knowledge
representation  system.  Users can easily customize these definitions and queries
to facilitate analysis activities.

10.  Domain Reasoning Experiment Overview

Human image analysts are able to carry out both spatial and temporal reasoning
to detect event sequences that span multiple images.  Such reasoning has received
relatively little attention in the image understanding field.  We have been
developing the VEIL system for carrying out this type of reasoning.  VEIL
performs high level interpretation of scene images using the deductive
capabilities of the Loom knowledge representation system [MacGregor and Bates
1987, Brill 1993], and provides users with semantically enriched browsing and
editing capabilities. The VEIL experiments used a database of RADIUS Model
Board 2 image site models stored in SRI’s RCDE system. This database is
augmented by a knowledge base stored in Loom that includes references to the
underlying RCDE-object models.  The Loom knowledge base also contains
representations of functional and structural knowledge not contained in the RCDE
model, and a library of high-level spatial reasoning functions. The Loom
knowledge base also contains abstract definitions for objects and events.  Using
this architecture as a base, VEIL supports queries that search within an image to
retrieve concrete or abstract objects; or that search across images to retrieve
images that contain specific objects or events. An event in VEIL is composed of
entities and/or subevents that collectively satisfy a set of temporal and spatial
constraints.  VEIL can scan a sequence of images and detect complex events.  In
the example presented in this paper, VEIL finds Field Training Exercise events
consisting of four subevents occurring in distinct images.

VEIL is implemented as a modular architecture wherein all communication
between Loom and the underlying IU system is mediated by RCDE protocols and
data structures [RADIUS Manual 1993]. In the future, it would be practicable for
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us to incorporate multiple IU systems into the VEIL architecture. Also, VEIL
could be exported to other sites along with RCDE, allowing other IU researchers
to connect their systems to VEIL. Thus, VEIL provides a generic means for
extending a RCDE-based IU system to include semantic processing of image data.
Use of VEIL also promotes the use of explicit, declarative domain models. We
forecast that this approach will be a key enabling technology when it becomes
time to interconnect image understanding systems with other knowledge-
intensive systems and applications.

11.  Underlying Technology

We are extending the semantics of the information that is captured by an image
understanding program by associating domain-level information with images.  We
use the following terminology.  The image means the digital input data. For our
examples these are photographs.  The site model  is a geometric model of objects
found in a particular image. Such objects can be roughly divided into objects
representing terrain features, structures and vehicles.  A domain model  is a
semantic model of items of interest in the domain.  This includes buildings and
vehicles as well as abstract notions such as the function of objects, groups of
objects, convoys and field training exercise events.

11.1  RADIUS

Our experiments use the forty RADIUS Model Board 2 images of a hypothetical
armored brigade garrison and exercise area.  A site model common to all forty
images was provided by the University of Maryland.  This RCDE-object site model
was used with only minor modifications in our work.1  We augmented the
common  site model with vehicle models for a subset of ten images.  Vehicles
were identified by a graduate student and their location noted in a file.  Vehicle
model objects are needed for VEIL’s event processing, but the source  of the
models is irrelevant.  A suitable automatic vehicle detector could be substituted
for our manual methods.

11.2  Loom

We use Loom, an AI knowledge representation language in the KL-ONE family, to
provide the infrastructure for semantic reasoning.  Loom provides the following
benefits:

• Declarative language.  Information is encoded in an easy-to-understand format.
This makes it easy to comprehend and extend the model.

                                    
1The modifications were to ensure a consistent composite grouping of buildings which were represented in the site model as
multiple cubes.  Several of such complex-structure buildings were already present as composite objects.  We manually
rounded out the site model to assure consistency in the modeling.
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• Well-defined semantics.  The meaning of language constructs is well-defined.
The meaning of the terminology is well established and validated by over 15
years of AI research into description logic  [Brachman 1979, Brachman et al.
1983].

• Expressivity.  Loom is one of the most expressive languages in its class.

• Contexts.  Assertions (facts) about multiple images can be accessed at the same
time.  This is a key feature used in recognizing events.

11.2.1  Definitions

Loom reasons with definitions, which equate a term with a system-understood
description in terms of necessary and sufficient conditions.  This allows useful
flexibility in reasoning for a recognition domain.  Combined with a hierarchy of
concepts one is able to make assertions that precisely capture the amount of
information available.  When details are not known, one is not forced to
overcommit in making entries to the knowledge base.  As more information
becomes available it can be added incrementally, improving the picture of the
world.  If enough additional information is added, Loom’s classifier automatically
recognizes an instance as belonging to a more specific concept.

Figure 12.  Vehicle Hierarchy of the Domain Model

We will illustrate how this works using the fragment of the domain model for
vehicles shown in Figure 12.  Suppose that the first pass of processing is able to
identify some group of pixels in the image as a vehicle.  Details about the type of
vehicle are not yet known, so the information is entered as a “vehicle V1 in
location X.”  With further processing, it may be determined that the vehicle has
tracks.  This information can be added, to the knowledge base, allowing the
classification of the vehicle as a tracked vehicle.  The classifier is able to
perform this inference because the definition of a “tracked-vehicle” is a vehicle
with a drive type of tracks.  Since V1 now satisfies the definition, Loom
automatically concludes that it is of type Tracked-Vehicle.  If an appropriate
type of gun is detected, V1 may finally be recognized as a tank.
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By using definitions, Loom can make the inferences licensed by the definitions
automatically.  This service frees applications built on top of Loom from needing
to implement their own inference mechanism.

Since Loom’s definitions are logical equivalence statements, they can be used to
reason in both directions.  The example above illustrated using the components of
a definition to perform a recognition task—synthetic reasoning.  One can also
assert the presence of higher level objects and then use the definitions to identify
components that should be present.

For example, a particular SAM unit may be known to deploy with a radar
vehicle and three launchers.  If such a unit is asserted to exist in a scene, Loom
concludes that there are three launchers present, even if they are not identified.
The definition can then be used as a guide to what other objects should be
present.  It can be used to drive the reasoning.  This type of reasoning was used
in another part of the VEIL project that identified runways [Price  et al. 1994].

11.2.2  Contexts

Loom has a context mechanism that allows one to maintain distinct assertion sets.
Loom’s contexts are organized hierarchically, which allows inheritance.  Siblings
are separate, so this allows information about different scenes to be kept
separate, but in the same lisp image.  The query language (see below) is able to
perform queries across contexts, so one can make comparisons and look for
particular patterns.

Augmenting this flexibility is the fact that Loom contexts are themselves first-
class objects.  That means that assertions and annotations about the context
themselves can be represented in the Loom formalism and be used to select
appropriate contexts.  This capability was added to Loom version 3.0 in response
to the needs of the VEIL project.

For example, if one had a context associated with a particular image, one could
annotate the context with information such as sun angle, time of day, camera
location, etc.  This information is available for image retrieval purposes.  At the
end of this paper, we will discuss  the use of this context mechanism in event
detection..  Event detection will involve searching for a sequence of images
(contexts) that fulfill the criteria for a given event.  This uses the ability of Loom
to have several image descriptions in memory simultaneously as well as the
ability to formulate and execute queries that cover several images.

11.2.3  Query Mechanism

Loom includes a general query facility that is able to find objects based on their
name, type or value of role (relation) fillers.
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Queries for Particular Objects:  Specific objects can be queried for in images.
Examples include looking for all buildings, all headquarters, all tanks, etc.
These queries allow a seamless use of collateral information in the RCDE
system:

(retrieve ?bldg
   (headquarters ?bldg))

Queries for Relationships:  In addition to queries that relate to single objects,
one can also query about relationships.  Examples include finding all buildings
with an area of more than 5000 square feet, locating all tanks on roads,
finding headquarters that are near barracks, etc.

(retrieve ?bldg
   (and (building ?bldg)
        (> (area ?bldg) 5000)))

Since Loom has the flexibility to allow new concepts to be defined dynamically,
users can create queries and assign names to the resulting concepts.  In future
queries, this defined name can be used.  This enriched vocabulary allows easier
customization of the knowledge base as well as a more compact expression of the
queries.  For example, one could take the query about “buildings with an area of
more than 5000 square feet” and introduce the named concept “large-building”
to describe  that query:

(defconcept large-building :is
  (satisfies (?bldg)
     (and (building ?bldg)
          (> (area ?bldg) 5000))))

In subsequent queries, the term “large-building” itself can be used.  This
provides the ability to dynamically extend the vocabulary used in the domain.
By packaging and naming these new concepts, it is easier to formulate
complicated queries because the introduction of abstract terms hides the
underlying complexity and makes it easier to manage.

The examples so far demonstrate how Loom queries can be used with a single
image.  But Loom queries are not restricted to single images, but can extend
across images.  This type of query is used in the event detection example below.

12.  The Domain Model

A prototype knowledge base containing domain concepts was created for use in
VEIL.  The type of knowledge encoded in this domain model ranged from the
concrete to the abstract.  Loom models (instances) for concrete, visible objects
such as roads, buildings and vehicles (see Figure 13) are linked to geometric
objects in the RCDE site model.  This linking is accomplished by making the RCDE
the value of a Loom relation on the Loom instance.
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Collateral information about objects in a scene, such as “building B44 is a
brigade headquarters”, is associated with the Loom instance representing the
building.  Other RADIUS research [Burhans et al. 1994] underscores the
usefulness of associating collateral information in image interpretation.  A
convenient method of adding such annotations to a knowledge base is described in
[Srihari et al. 1996] (see also the next article in this book).  The use of collateral
information improves the match between the vocabulary of the domain experts
and that of the computer support system.

Figure 13.  Domain Model for Visible Objects in VEIL
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Abstract concepts such as groups, functional roles and events are used to
augment reasoning about the concrete objects.  This abstraction process mirrors
and extends the abstraction done in moving from geometric object to conceptually
meaningful domain objects.  The main examples that we use in VEIL are the
concept of a group of vehicles2 and the concept of high-level events.  The events
are abstractions composed of  sub events.

Abstract entities can be specialized based on their characteristics.  For example,
VEIL defines a convoy as a group of vehicles with at least 65% of them on a road.
Additional constraints can be added  such as requiring a minimum number of
vehicles (i.e., >4).  Loom’s flexible knowledge representation easily supports
specialization of the general vehicle convoy such as defining a convoy of tanks.

The definition of a convoy combines information that is present in the Loom level
(such as group membership) with information that is inherently geographic (such
as the location of vehicles on roads).  Loom’s forte is symbolic reasoning.
Determination of geographic location is geometric reasoning that is best handled
using RCDE model structures.  Accordingly, we have developed several
representative and interesting geometric predicates and linked them to Loom
relations.  Reasoning is performed at the appropriate level and the results
integrated by Loom.

12.1  Linking the Domain and Site Models

At the domain model level, the geometric information about the objects is not
directly available.  Instead, reasoning is focused on the function and wider role of
the objects.  At the geometric level, information about the location and size of
objects is either directly available or computable from directly available
information.  For example, the location of a particular cube object is readily
available and its volume can be easily computed using information stored about
the length of the sides of the cube.

Figure 14 shows the original Image 16 from Model Board 2 and the view with
the Loom geometric object level overlayed.  The geometric objects are standard
RCDE objects.  Buildings are from the shared site model and vehicles are from
the image-specific model.

Each Loom model object that has a geometric representation is linked to an
underlying RCDE object.  This allows the specification of queries that link Loom
model concepts with geometric information.  An example would be “Find all
headquarters buildings (Loom level) with a size greater than 5000 square feet
(geometric level).

                                    
2In the current implementation, groups are created by humans.  Future work extending our ideas would involve providing
tools for moving this into a semi-automated task.
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Figure 14.  Image M16 — Plain and with Model Overlay
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12.2 Geometric Relations

We have implemented several functions at the geometric level which are linked
to Loom relations. Table 1 summarizes the basic relations.  The  most
fundamental predicate is the one that returns locations.  Given the three-space
location of objects we implemented directional relations (north, northeast, etc.),
We have also implemented computations for  the area and volume of the most
common geometric objects used in the site models.

Loom relations were linked to these functions.  This enables Loom queries to
seamlessly exploit both the semantic information contained in Loom’s domain
model and the geometric information from the underlying site model.  An
example of such a composite query is to find “all vehicle storage sheds with a
floor area greater than 5,000 square feet”:

(retrieve ?shed
   (and (vehicle-shed ?shed)
        (> (area ?shed) 5000)))

The concept vehicle-shed and the relation > are domain level operators.  The
relation area is a domain level relation that is linked to a site-model-level
function.  Loom’s allows a computed relation to be defined by a Lisp function.
[Haarslev et al. 1994] describes a similar method for linking Loom reasoning to
an underlying spatial reasoning system.

Geometric relations can also be computed between objects.  We implemented a
containment test (contains-point-p), which tests to see if a given three-space point
is contained in a 3 dimensional object (or located over a 2 dimensional object).
This predicate is used in queries and concept definitions to  locate vehicles that
are on roads — for example in the concept of vehicles in a convoy.

One of  the more interesting relations that we have investigated is the “is-near”
relation.  This is a subjective relation adopted from the nearness predicate in
Abella’s Ph.D. thesis [Abella 95].  Her studies found that a psychologically valid

Table 1.  Geometric Functions and RCDE Objects

RCDE Geometric Function
Object Type Location Contains-point-p Is-Near Area Volume
CUBE-OBJECT X X X X X
CYLINDER X X X X X
HOUSE-OBJECT X X X X X
3D-CLOSED-CURVE X X X X
3D-RIBBON-CURVE X X X X
COMPOSITE-OBJECT X X X X X
Others X
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implementation of nearness was influenced by  the size of the objects in question.
In other words, the larger the object, the farther away one could be in absolute
distance while still being considered near.  She developed a function that
computes an “extended bounding box” for each object, based on the object’s
dimensions.  When two bounding boxes intersect, the objects are “near”.  

We extended her formula to three dimensions.  For  buildings or vehicles, this
yields appropriate results.  The approach breaks down when the aspect ratio
becomes very large.  Extremely long, thin objects end up with very large
bounding boxes because of the effect of their length on the size of the nearness
boundary.  Roads are prime examples from the  site model that we use.  The
length of a road influences how far away one can be from a road and still be
considered near.  This produces counterintuitive results.

1 2

Road

Figure 15.  Extended Bounding Boxes for Computing Nearness
Site model objects have white boundaries.  Extended bounding boxes for selected objects are black.

We therefore modified the algorithm for the case of long, thin objects.  Objects
with high aspect ratio disregard the long dimension when computing the nearness
boundary.  This modification produces appropriate results for our purposes.
Figure 15 shows an image and the associated extended bounding boxes of a
curved road and two buildings.  Building 2 (on the right) satisfies the “near-to”
relation with respect to the curved road, but Building  1 (on the left) does not.3

                                    
3The road is shown divided into bounding boxes segment-wise.  The rectangular boxes are used for  a rough test of nearness.
A more sophisticated test which implements a smooth envelope is used for the final comparison.
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13.  Event Detection

In this section we describe how we define events — objects that satisfy constraints
both within and across images.  We also outline how VEIL is able to locate such
events in its database.

13.1  A Definition Language

An event is a sequence of scenes that satisfy certain criteria.  Some of the
criteria apply within scenes whereas other criteria describe the relationship
between different scenes.  Accordingly, we defined a language that allows these
constraints to be specified in a natural way.  The scenes in an event are described
separately, specifying any criteria that apply  within a single scene.  A set of
global constraints is then used to specify the conditions that must hold between
scenes.  The most common cross-scene constraint is that of order.  A sequence of
scenes implies that there is an ordering to the scenes.

13.2  Sample Event Definitions

Figure 16 shows an event definition named “Field-Training-Exercise” and its
associated Loom query.  The event consists of four scenes involving an armored
unit “?y”.  The scenes must include one with ?y “in-garrison”, two scenes with ?y
in convoy and one with ?y deployed.  In addition, the scenes are constrained
temporally by the :constraints field.  Translating this into English, we are looking
for a sequence of scenes showing an armored unit in a garrison, then moving in
convoy, then deployed in a training area and finally in convoy again.  A set of
images showing this evolution is shown in the example below.

Figure 16.  Event Definition and Corresponding Loom Query

(make-event
  :name 'field-training-exercise
  :case-roles '((armored-unit ?y))
  :components
   '((:scene ?s1 ?y (in-garrison ?y))
     (:scene ?s2 ?y (convoy ?y))
     (:scene ?s3 ?y (deployed-unit ?y))
     (:scene ?s4 ?y (convoy ?y)))

  :constraints '((before+ ?s1 ?s2)
                 (before+ ?s2 ?s3)
                 (before+ ?s3 ?s4))))

(retrieve (?Y ?S1 ?S2 ?S3 ?S4)
 (and (within-world ?S1
            (In-Garrison ?Y))
      (within-world ?S2
            (Convoy ?Y))
      (within-world ?S3
            (Deployed-Unit ?Y))
      (within-world ?S4
            (Convoy ?Y))
      (before+ ?S1 ?S2)
      (before+ ?S2 ?S3)
      (before+ ?S3 ?S4))
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13.3  Example of Event Detection

Figure 17 shows a master view of the ten images we used in our experiments.
An example of a field training exercise event is highlighted.  Figure 18 shows a
close-up of the field training exercise with the objects participating in the event
highlighted.  A colored box is drawn around the group of vehicles in each image.
(In these figures, the group bounding box has been enhanced for better black-
and-white printing.)

13.4  How It’s Done

The Loom query in Figure 16 (right) is used to extract those scenes that meet
the event criteria.  This involves satisfying the conditions for each individual
scene (such as finding a group that is in a garrison area in a scene) and also
satisfying the cross-scene constraints (such as being in a particular temporal
order).  Loom concepts define the terms such as “in-garrison” (a group of vehicles
in a maintenance or storage area) that are  in turn used to define the event.

The result of this query will be a set of tuples.  Each tuple consists of the group
(?Y) and the four scenes (?S1–?S4: contexts associated with images) that satisfies
the query.  The link to the RADIUS allowed the visual displays in the examples of
Figure 17 and Figure 18 to be created automatically from one such event match.

Figure 17.  Field Training Exercise Event Found in an Image Sequence



F30602–93–C–0064 VEIL Final Report

37

Because of Loom’s named definitions, the query for finding events is quite
compact and reasonably readable.  This shows the power of having an extensible
domain-specific language:  even complex criteria can be expressed in a concise and
natural manner.

14.  Current Status

The current VEIL model has been tested using ten images from the RADIUS Model
Board 2 image set (See Appendix B).  It is integrated with the RCDE code and uses
the RCDE graphics interface for user interaction and display purposes.  The
figures in this report are screen shots from the VEIL-RCDE system.

Figure 18.  Close-Up View of Field Training Exercise
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15.  Future Work

There are several directions for extending our research.  One major direction
would be to improve the matching algorithm used to find events.  The current
match relies on using Loom’s general query mechanism.  While this provides
flexibility, the logic-based query language does not take advantage of special
features of the problem of event matching that can increase efficiency.  For
example, there is no direct exploitation of the fact that the scenes being looked
for form an ordered sequence.  Additional enhancements would be to modify the
event matching language to allow inexact matches.  This can take the form of
partial matches, matches to key features but with missing elements, or a more
general probabilistic matching scheme.

A sub-problem of the general matching task is associating groups from one image
with those from a different image.  (In the current work, such matching is done
by hand.)  An interim position would be to use a credulous matcher,4 although
that would need to be refined in order to scale well.  The preferred approach
would be to develop a compatibility score for matches between groups in one
image and groups in another image.  This score would be based on factors such as
the size of the group, the composition of the group (i.e., with or without tanks),
as well as heuristic reasoning based on other elements that are visible in an
image.  With a more sophisticated matcher, a list of candidate image sequences
can be identified and ranked as to the closeness of the match.

Computer support for assigning individual vehicles to groups is another area for
further investigation.  The group assignment problem involves identifying a
collection of vehicle that are related in some interesting way.  Geometric
proximity is one important consideration, but it is not always he most important.
Consider a convoy driving by a parking lot.  Some vehicles in the convoy will be
closer to parked vehicles than to other convoy vehicles, but the importance of
being on the road should be given more weight in the group assignment process.
A semi-automated grouping tool would be a useful addition to RCDE.

                                    
4 A credulous matcher  is one that would return all potential matches.  This guarantees that no matches will be missed, but i s
likely to return a lot of false positive matches.
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Part IV.

Conclusion.

Vision programming tools are adequate for low-level  vision processing, but less
appropriate for high-level vision tasks.  This  proposal offered a remedy for this
situation, namely, to use the Loom system to represent high-level visual
knowledge.  We employed a layered architecture wherein specialized data
structures were used to represent lower-level  knowledge, while symbolic
structures were used to represent higher level  knowledge.

VEIL was an experiment both to see how traditional knowledge representation
technology can be applied to computer vision programs and to explore extensions
to knowledge representation systems to directly aid computer vision research
(especially in the area of spatial reasoning and event detection.)

16. Representation in Programs

A key benefit of applying Loom knowledge representation technology to vision
processing was that the VEIL system was able to use the  semantic information
expressed in Loom models to form expectations about the objects in the visual
field, and thereby guide the low-level vision routines.  This improved the overall
accuracy and robustness of the vision system, in addition to easing system
development, and improving its maintainability and extensibility.

High level reasoning provided by Loom was integrated with low- and mid-level
processing techniques, such as line finding, segmentation, perceptual grouping
and shape descriptions commonly used in vision systems.  The goal of VEIL
development is to allow  vision application systems to be written more easily, by
enabling the  construction of explicit declarative vision models, and by exploiting
the knowledge  representation and reasoning capabilities provided by Loom.  The
experience with the airport example shows that this goal was achieved.

17. Domain Level Reasoning

The bulk of work in IU research has been on developing algorithms that operate
at the pixel level and are able to recognize geometric objects.  Common examples
are edge detectors, building detectors and vehicle detectors.  In our work, we
have been investigating the next stage of image understanding.  In other words,
we are concerned with the question of what sort of processing would we like to
have happen once the low-level detectors have finished their work.

We feel that  the next step involves reasoning with the aid of domain models—
models of the world.  This raises the level of abstraction of the interface between
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the image analyst and the computer system.  Instead of operating at the level of
pixels or geometric shapes, one would like to have the interface operate at a level
that has the appropriate semantic content for the task at hand.  This level would
allow interaction in terms of headquarters rather than buildings, convoys rather
than isolated vehicles.  By raising the level of interaction, better use of an image
analyst’s time can be made.

By increasing the level of abstraction and allowing queries at that level, it
becomes easier to select appropriate images for viewing out of a large library.  By
raising the level of abstraction, we are also able to describe events that cover
multiple images naturally and locate them efficiently.
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APPENDIX A

Image Understanding Environment Support

The Image Understanding Environment (IUE) in an object oriented software
development system for supporting research in image understanding and for
facilitating the exchange of results and programs among different research
groups. The IUE provides a conceptual framework for image understanding
describing algorithms and data and the implementation of standard techniques
within the IUE will allow for performance evaluation and comparisons between
different techniques.

The process of designing the IUE began in 1989 with a number of meetings
where existing systems and approaches were evaluated and the goals of the
program were specified. In 1991, the IUE Technical Committee (IUETC) was
established to generate the final specifications. This design process resulted in a
design with over 500 classes and over 800 pages of documentation.  The
implementation effort is led by AAI, but the initial class definitions and empty
method definitions are generated directly from the documentation that was
developed by the IUETC in its several years of effort.  We participated in the
initial evaluation effort and in the later specification and evaluation effort while
serving on the IUETC.

In the initial specification phase of the project our primary role was in the
description of image features, the spatial index and data exchange. While the
implementation of the basic IUE is being done by AAI, a number of programs
(called the library) are not included in their requirements.

Our role in this design process included work on the general specifications,
through the many meetings of the committee. We provided detailed
specifications in the area of image features, the spatial index, and data exchange.
Image features are the primary building blocks of image understanding
programs. These include point (0-D) features such as simple edge elements,  line
(1-D) features such as extracted edge or line features, and area  (2-D) features
such as image regions, and groupings of these basic features such as line
junctions and ribbon features.

In the development of the IUE, the initial specification of image features was
treated separately from other objects (indeed the initial specification of many
parts was separate from other related objects). Through the committee
discussions it became apparent that the general group of spatial objects and image
features were similar, but different.  This led to the development of the current
image feature description in terms of the more general spatial object hierarchy.
In many cases the only difference between an image feature and the
corresponding spatial object is the relationship of the feature to an image.
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We developed programs to extract edge elements from the image, group the
edges into sequences, extract image-feature line segments from the sequences,
and finally to group the line segments into parallel pairs  (for simple ribbon
features). These programs were based on the earlier work of Nevatia and Babu
[Nevatia and Babu 1980].

For many operations it is necessary to answer a variety of spatial questions about
an object.  For example “what line segments are near some point?” or “what line
segments are within a given distance from a line?”  The typical storage of the line
segment feature in a list works when there are few features, but results in large
computation times for images typically used in many  applications (which can
easily have 10,000 or 50,000 line segments). To  efficiently answer these
questions, we use a spatial index. In the simplest form, this is just an array that
maps directly to image locations (usually the array is smaller than the image so
that blocks of the image map to one array location). This means that spatial
questions (e.g. near a point, near a line, etc.) can be approximately answered by
reference to the array, with exact answers still requiring testing of the limited
number of objects that are returned from the array reference. The basic spatial
index design was completed with the implementation being done by AAI under
their IUE implementation contract.

One of the early goals of the IUE was predictable data exchange of structures
normally used by image understanding programs. For this purpose, the IUE
committee defined an IUE data exchange standard. The standard must be
functional (able to describe all objects), compatible, portable and extensible. We
adopted a character-based, human readable format that uses a Lisp-like syntax
(primarily the use of parentheses as  delimiters) with generic representations.
The data exchange standard thus provides a means for transfer between users of
the IUE, but also provides a means to transfer data, with consistent interpretation
of the values, between the IUE and other systems or between different image
analysis systems.

While AAI implemented the IUE DEX system, we implemented a Lisp-Based DEX
reader/writer so that data could be exchanged between the IUE and the RCDE
used in the program.

To support the goal of providing working programs in the IUE and to test the
completeness of image feature descriptions we developed programs to extract
edge elements from the image, group the edges into sequences, extract image-
feature line segments from the sequences, and finally to group the line segments
into parallel pairs  (for simple ribbon features). These programs were based on
the earlier work of Nevatia and Babu [Nevatia and Babu 1980]. The initial
implementation of these programs came before many of the image feature classes
were implemented, but the transition to the later versions of the IUE was
simplified by using the same basic descriptions of the objects (since the enhanced
capabilities that come with the IUE objects were not needed).
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APPENDIX B

 Model Board 2 Images

Figure 19.  Map of Model Board 2
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Figure 20.  Image M 4
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Figure 21.  Image M 6
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Figure 22.  Image M 8
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Figure 23.  Image M12
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Figure 24.  Image M16
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Figure 25.  Image M19
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Figure 26.  Image M24
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Figure 27.  Image M27
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Figure 28.  Image M32



F30602–93–C–0064 VEIL Final Report

53

Figure 29.  Image M33
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APPENDIX C

 Vehicle Location Data

These tables contain the
information that was
used to augment the site
models provided with
the RADIUS distribution.

Since the project did not
have a reliable vehicle
detector available, the
vehicle locations, vehicle
types and vehicle group
assignments were done
by humans.

The VEIL program used
the group and location
information to infer the
status of groups as being
in convoys, in garrison
areas or in the field.  As
can be seen, the only
semantic content added
by hand are vehicle type
and group assignments.
VEIL automatically infers
all additional semantic
information.

Coordinates are given in
terms of the underlying
RADIUS Model Board 2
site model’s geographic
coordinate system.  They
can be used by Other
researchers using this
site model.

Image M 4
Group Type X Y

None Crane 1407.0 -352.3
Crane 1412.7 -235.8

Vehicle 1413.7 -468.3
Vehicle 1448.1 -350.0
Vehicle 1448.4 -373.7
Vehicle 1457.2 -439.5
Vehicle 1470.3 -112.5
Vehicle 1481.9 76.7

Group 1 Vehicle 705.8 714.1
Vehicle 740.8 716.6

Tank 775.6 738.5
Tank 786.9 774.9
Tank 809.7 828.2
Tank 832.5 871.6
Tank 846.7 902.9
Tank 863.6 946.3
Tank 892.1 979.7
Tank 943.7 972.0
Tank 986.7 950.0
Tank 1032.3 923.3

Vehicle 1249.3 815.0
Group 3 Vehicle 1437.2 718.3

Tank 1540.7 933.4
Vehicle 1553.8 966.0

Image M 6
Group Type X Y

Group 1 Tank -142.1 352.5
Tank -138.2 313.1
Tank -135.5 400.8
Tank -133.0 274.9
Tank -129.4 242.9
Tank -128.5 436.7
Tank -109.5 472.7
Tank -93.1 508.7
Tank -67.3 539.8
Tank -43.7 556.0
Tank -24.2 573.4
Tank -18.7 615.3

SP-Artillery 34.4 349.0
SP-Artillery 48.9 395.9
SP-Artillery 59.9 429.2

Vehicle 75.6 1029.3
Vehicle 118.6 95.9
Vehicle 121.7 125.3
Vehicle 125.0 1061.0
Vehicle 137.7 119.5
Vehicle 155.5 1106.2
Vehicle 171.0 381.7
Vehicle 254.3 1012.3
Vehicle 293.9 490.7
Vehicle 303.5 521.2
Vehicle 313.0 321.7
Vehicle 333.1 351.2
Vehicle 358.5 374.7
Vehicle 381.2 398.1
Vehicle 404.1 416.6
Vehicle 426.7 1008.9
Vehicle 442.1 1014.9
Vehicle 459.9 1025.7
Vehicle 474.6 961.2
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Image M 8
Group Type X Y

None Vehicle 532.4 1658.5
Vehicle 539.2 1153.2
Vehicle 752.8 1150.3
Vehicle 784.0 761.6

Tank 839.9 864.6
Tank 904.2 998.6

Vehicle 1008.8 647.8
Vehicle 1018.1 -99.8
Vehicle 1489.0 601.1

Group 1 Tank 1066.6 870.3
Tank 1086.2 865.1
Tank 1102.7 858.3
Tank 1109.5 999.3
Tank 1118.5 848.6
Tank 1130.4 989.9
Tank 1137.3 840.4
Tank 1148.2 979.0
Tank 1153.2 830.6
Tank 1166.2 968.0

Vehicle 1184.4 1199.9
Tank 1185.7 962.9
Tank 1198.6 812.9
Tank 1201.4 953.3

Vehicle 1204.3 1187.9
Tank 1216.7 801.7
Tank 1222.4 943.9
Tank 1234.6 1059.1
Tank 1237.3 799.5
Tank 1239.8 940.1
Tank 1260.1 927.7
Tank 1355.6 754.4

Vehicle 1488.5 1160.8
Vehicle 1509.5 1151.6

Group 3 Vehicle 1469.7 851.4
Vehicle 1519.0 776.3
Vehicle 1535.3 904.3

Tank 1556.6 949.3

Note: there is no group 2 in
 this image.

Image M12
Group Type X Y

None Vehicle 60.1 -71.1
Vehicle 212.5 575.2
Vehicle 231.3 1452.3
Vehicle 768.6 -97.5
Vehicle 1193.4 1602.9
Vehicle 1470.5 -329.8
Vehicle 1517.0 298.3

Tank 1754.1 1417.5
Group 1 Vehicle 1023.7 1080.6

Tank 1064.5 877.2
Tank 1092.6 878.2
Tank 1106.0 853.8
Tank 1109.7 1011.1
Tank 1124.8 993.1
Tank 1124.9 846.0
Tank 1143.9 834.9
Tank 1147.4 982.7
Tank 1164.5 972.4
Tank 1181.9 817.6
Tank 1183.4 963.1
Tank 1197.2 810.9
Tank 1206.1 954.3
Tank 1212.5 802.6
Tank 1231.7 793.0
Tank 1250.0 933.9
Tank 1254.8 783.9
Tank 1269.3 921.2
Tank 1275.2 814.7
Tank 1290.3 914.5

Vehicle 1299.1 1037.2
Tank 1311.6 902.8

Vehicle 1329.4 1125.8
Vehicle 1335.9 1007.6
Vehicle 1366.8 994.8
Vehicle 1373.6 1104.3
Vehicle 1505.8 1046.1

Group 2 Tank 1313.9 1396.1
Tank 1336.5 1388.0
Tank 1363.1 1375.7
Tank 1372.9 1507.8
Tank 1395.6 1356.7
Tank 1397.4 1501.1
Tank 1416.6 1349.1
Tank 1416.6 1487.8
Tank 1430.0 1342.1
Tank 1435.7 1476.1
Tank 1456.6 1470.3
Tank 1470.5 1322.4
Tank 1475.7 1465.0
Tank 1489.9 1310.3
Tank 1506.7 1445.2
Tank 1523.9 1440.4
Tank 1529.9 1315.2
Tank 1658.9 1420.9

Group  3 Tank 1421.9 869.8
Tank 1457.5 706.3
Tank 1485.7 878.7

Image M16
Group Type X Y

None Vehicle 1117.8 1491.6
Group 1 Tank 41.5 1394.4

Tank 74.7 1401.8
Tank 117.5 1414.5
Tank 158.7 1429.9
Tank 195.0 1439.8
Tank 243.5 1449.3
Tank 288.9 1445.0
Tank 328.5 1432.5
Tank 364.6 1398.0
Tank 399.2 1366.3
Tank 429.5 1329.1
Tank 467.8 1260.8
Tank 492.3 1220.7
Tank 508.1 1183.6
Tank 524.4 1140.7
Tank 538.3 1097.7
Tank 550.0 1055.0

Vehicle 553.6 1051.6
Vehicle 563.4 1017.0
Vehicle 582.9 947.4
Vehicle 588.8 915.5

Tank 595.2 877.6
Tank 607.9 836.5
Tank 625.2 801.2
Tank 646.0 768.6
Tank 674.2 736.0
Tank 711.9 709.1
Tank 756.5 702.9
Tank 778.2 738.1
Tank 792.5 773.2
Tank 812.5 825.5
Tank 835.8 865.8
Tank 852.2 900.2
Tank 872.3 945.8

Group 2 Tank 1281.2 1400.4
Tank 1300.7 1397.0
Tank 1322.3 1385.6
Tank 1351.3 1376.6
Tank 1366.1 1365.5
Tank 1384.5 1351.5
Tank 1403.1 1345.6
Tank 1426.8 1334.1
Tank 1444.5 1325.5

Vehicle 1448.1 1715.4
Tank 1473.3 1308.6
Tank 1476.9 1446.7
Tank 1494.1 1302.6

Vehicle 1495.1 1579.4
Tank 1504.0 1432.5

Vehicle 1517.6 1565.5
Tank 1530.5 1423.7

Vehicle 1539.4 1556.8
Vehicle 1557.5 1543.1

Group 3 Vehicle 1124.2 1104.7
Vehicle 1143.0 1206.6
Vehicle 1152.4 1090.2
Vehicle 1234.4 1157.5

Tank 1468.1 869.0
Tank 1489.4 902.5
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Image M19
Group Type X Y

Group 1 Tank 589.1 928.4
Vehicle 606.3 870.4
Vehicle 647.8 772.8
Vehicle 674.1 742.9
Vehicle 701.6 716.1
Vehicle 730.8 687.5
Vehicle 771.6 724.1

Tank 799.4 793.1
Tank 821.9 835.7
Tank 843.5 880.7
Tank 869.8 941.9
Tank 940.6 1077.6

Group 2 Tank 1462.1 602.7
Tank 1481.9 646.1
Tank 1500.8 682.7
Tank 1508.4 594.3
Tank 1513.5 720.9
Tank 1536.4 762.4
Tank 1552.8 595.0
Tank 1558.4 804.5

Vehicle 1582.9 851.4
Tank 1600.5 600.0
Tank 1643.7 609.0
Tank 1686.7 619.7
Tank 1730.3 633.4
Tank 1770.3 652.0
Tank 1809.4 663.9
Tank 1843.8 687.0
Tank 1881.4 712.5

Vehicle 1911.5 730.2
Vehicle 1938.2 743.6
Vehicle 1965.5 761.7
Vehicle 2002.8 781.4

Group 3 Tank 959.0 964.3
Tank 1040.5 1053.8
Tank 1106.4 886.9
Tank 1205.4 840.2
Tank 1249.9 779.5

Vehicle 1374.2 735.9
Tank 1413.8 871.1
Tank 1450.2 706.2
Tank 1473.3 881.1

Group 4 Tank 1286.0 1404.5
Tank 1303.9 1395.5
Tank 1327.7 1388.1
Tank 1350.6 1376.3
Tank 1478.0 1311.1
Tank 1493.9 1439.1
Tank 1507.4 1433.9
Tank 1516.8 1316.5

Image M24
Group Type X Y

Group 1 Vehicle 573.6 -108.0
Vehicle 617.1 -111.0
Vehicle 628.4 809.3

Tank 1036.0 887.5
Tank 1055.0 874.4

Vehicle 1065.0 -137.0
Tank 1075.0 866.1
Tank 1090.0 857.8
Tank 1091.0 1005.0
Tank 1110.0 849.6
Tank 1113.0 998.7
Tank 1124.0 838.9
Tank 1130.0 990.3
Tank 1143.0 829.5
Tank 1146.0 984.4
Tank 1163.0 974.8
Tank 1164.0 820.1
Tank 1181.0 811.9
Tank 1183.0 963.0
Tank 1199.0 802.6
Tank 1200.0 951.1
Tank 1219.0 944.0
Tank 1219.0 792.0
Tank 1233.0 936.9
Tank 1242.0 781.5
Tank 1253.0 926.3
Tank 1269.0 915.6
Tank 1291.0 908.6
Tank 1306.0 899.2

Vehicle 1498.0 568.8
Vehicle 1504.0 281.4
Vehicle 1505.0 194.6

Tank 1537.0 946.9
Vehicle 1539.0 596.4

Image M27
Group Type X Y

None Vehicle 155.4 1441
Vehicle 169.8 -80.1
Vehicle 525.7 1164.2
Vehicle 755.0 1407.6
Vehicle 904.9 1029.9
Vehicle 1017.7 -94.5
Vehicle 1468.1 640.4

Group 1 Tank 1053.7 874.3
Tank 1079.1 866.6
Tank 1093.4 860.0
Tank 1101.0 1000.9
Tank 1110.5 850.9
Tank 1121.8 993.7
Tank 1128.9 845.1
Tank 1138.7 984.5
Tank 1146.5 833.1
Tank 1156.0 973.9

Vehicle 1171.1 1198.3
Tank 1176.6 966.8
Tank 1191.5 812.5
Tank 1191.8 955.9

Vehicle 1195.7 1191.5
Tank 1208.7 802.1
Tank 1211.7 951.8
Tank 1223.0 1065.1
Tank 1228.9 796.7
Tank 1231.5 938.7
Tank 1253.9 932.0
Tank 1346.6 756.8

Vehicle 1476.9 1163.7
Vehicle 1501.9 1151.5

Group 2 Tank 1293.8 1401.9
Tank 1314.0 1394.4
Tank 1339.4 1381.8
Tank 1356.6 1536.1
Tank 1364.1 1372.0
Tank 1375.6 1524.0
Tank 1376.5 1362.1
Tank 1397.5 1350.4
Tank 1402.1 1514.3
Tank 1449.9 1350.5

Vehicle 1465.5 1483.4
Vehicle 1487.8 1473.3

Tank 1507.5 1335.5
Vehicle 1513.2 1457.9
Vehicle 1542.4 1443.1

Tank 1576.5 1561.4
Tank 1617.2 1529.3

Group 3 Vehicle 1457.9 851.8
Tank 1550.4 949.7
Tank 1570.9 991.0

Group 4 Vehicle 1720.2 1250.0
Tank 1827.9 1552.6
Tank 1846.4 1538.0

Group  5 Tank 2087.8 529.3
Vehicle 2088.7 285.2
Vehicle 2090.0 321.0

Tank 2090.0 502.8
Vehicle 2090.1 304.0

Tank 2150.6 549.3
Tank 2168.1 382.2
Tank 2169.4 409.3
Tank 2169.6 433.4
Tank 2169.8 309.0
Tank 2170.0 333.1
Tank 2170.1 357.2
Tank 2170.9 452.0
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Image M32
Group Type X Y

None Vehicle 207.8 578.7
Group  1 Vehicle -93.1 1379.5

Vehicle -59.0 1386.7
Vehicle -21.6 1395.5
Vehicle 9.6 1403.2
Vehicle 46.4 1408.6
Vehicle 87.2 1417.8
Vehicle 121.3 1428.3
Vehicle 166.4 1440.0
Vehicle 207.3 1452.4
Vehicle 243.2 1464.7

Tank 283.7 1461.0
Tank 323.5 1442.5
Tank 358.4 1417.1
Tank 387.7 1388.3
Tank 415.4 1355.5
Tank 443.6 1319.3
Tank 462.9 1285.0
Tank 485.0 1248.0
Tank 502.6 1209.9

Vehicle 525.6 1156.4
Vehicle 571.2 986.7
Vehicle 577.8 954.9
Vehicle 589.8 913.5
Vehicle 602.8 873.2
Vehicle 620.2 834.4

Tank 643.9 787.2
Tank 669.1 749.7
Tank 705.6 719.0
Tank 753.4 712.0
Tank 779.2 768.4
Tank 802.6 819.9
Tank 828.9 868.9
Tank 853.2 916.1
Tank 886.9 974.7
Tank 934.2 980.0

Vehicle 990.5 953.5
Group 2 Vehicle 990.0 646.1

Tank 1025.8 641.2
Tank 1067.9 637.3
Tank 1110.3 631.3
Tank 1160.9 621.8
Tank 1212.3 612.2
Tank 1260.7 605.2
Tank 1310.8 599.9
Tank 1348.9 599.7
Tank 1403.5 596.7
Tank 1456.4 596.0
Tank 1502.2 597.5
Tank 1503.3 597.3
Tank 1551.2 597.4
Tank 1596.8 603.9
Tank 1640.1 610.7
Tank 1682.4 622.7
Tank 1724.7 633.7

Vehicle 1760.3 646.7
Vehicle 1801.4 663.8
Vehicle 1829.5 677.1
Vehicle 1862.5 699.5

Image M32 (continued)
Group Type X Y

Group 3 Vehicle 1293.5 1043.1
Tank 1413.0 872.6
Tank 1449.8 708.0
Tank 1471.8 884.7

Vehicle 1498.4 1050.2

Group 4 Tank 1282.0 1417.3
Tank 1300.6 1406.8
Tank 1319.9 1398.3
Tank 1347.6 1385.8
Tank 1474.5 1318.5
Tank 1490.0 1450.3
Tank 1506.0 1446.8
Tank 1515.8 1327.1

Group 5 Tank 2094.8 473.0
Tank 2095.7 443.5
Tank 2096.8 503.2

Image M33
Group Type X Y

None Vehicle 1125.1 625.8
Group 1 Vehicle 244.5 1453.6

Vehicle 298.1 1451.2
Vehicle 343.4 1429.8
Vehicle 380.8 1391.8
Vehicle 419.7 1348.9
Vehicle 437.5 1317.9

Tank 462.9 1277.2
Tank 486.4 1238.9
Tank 505.3 1200.5
Tank 526.9 1164.5
Tank 535.7 1121
Tank 544.8 1079.8
Tank 555.9 1036
Tank 572.4 982.4
Tank 583.6 938.4

Vehicle 603.3 874.7
Vehicle 654.1 771.5
Vehicle 675.9 747.1
Vehicle 704.4 720.3
Vehicle 732.5 691.0
Vehicle 777.2 734.4

Tank 799.0 796.8
Tank 827.2 841.7
Tank 843.2 883.7
Tank 873.5 942.9
Tank 939.2 1081.7
Tank 960.1 966.1
Tank 1250.4 781.4
Tank 1280.6 915.4
Tank 1301.5 903.7
Tank 1409.3 869.4
Tank 1448.2 705.1

Group 2 Tank 1284.0 1411.7
Tank 1308.9 1400.1
Tank 1327.5 1390.9
Tank 1349.8 1517.5
Tank 1354.9 1381.7
Tank 1372.7 1508.3
Tank 1373.5 1372.5
Tank 1388.9 1356.3
Tank 1393.0 1496.8
Tank 1410.6 1354.0
Tank 1413.6 1487.6
Tank 1429.9 1478.4
Tank 1430.4 1337.9
Tank 1449.0 1328.7
Tank 1452.7 1469.3
Tank 1473.0 1457.8
Tank 1477.9 1314.9
Tank 1493.6 1448.6
Tank 1501.4 1310.3
Tank 1507.4 1437.2
Tank 1528.3 1430.3

Vehicle 1569.0 1557.8
Vehicle 1593.4 1546.4
Vehicle 1621.6 1530.5
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