
* This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense and was monitored
by Rome Laboratories under Contract No. F30602-93-C-0064. The
United States Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright
notation hereon.

Abstract

The VEIL project focuses on integrating advanced
knowledge representation technology (provided by
Loom) with image understanding technology to devel-
op advanced tools for the generation of vision systems.
This effort is aimed at exploring the weaknesses of cur-
rent knowledge representation technology for computer
vision tasks in the realm of spatial reasoning and ad-
dressing a weakness in computer vision technology in
the realm of higher level representations. The result will
improve shareability and reusability of code for com-
puter vision systems.

1 Introduction
The VEIL (Vision Environment Integrated with Loom)
project is a collaborative effort between ISI’s Loom
project (Knowledge Representation) [MacGregor &
Burstein 1991] and the Computer Vision group. It is an
experiment both to see how traditional knowledge rep-
resentation technology can be applied to computer vi-
sion and to explore extensions to knowledge
representation systems to directly aid computer vision
research (especially in the area of spatial reasoning).

 This effort investigates the benefits available to vi-
sion applications obtainable via the introduction of de-
clarative programming techniques, specifically, tech-
niques available using advanced symbolic processing
technology found in a modern knowledge representa-
tion system. In typical vision applications today, a pro-
grammer invents specialized data structures and care-
fully crafts a suite of vision processing algorithms that
exploit those data structures. The result is most often a
highly specialized piece of code that cannot be reused
for a different domain, or applied to applications other
than the one originally intended. The Image Under-
standing Environment [Mundyet al. 1993] addresses

some of these issues, including sharing and reuse of ba-
sic data structures and processing algorithms, but does
not deal with higher level representation issues that are
the focus of this work.

The VEIL project aims to develop a technology
whereby much of the work that goes into the develop-
ment of specialized vision processing modules results in
software that can be shared or reused by multiple appli-
cations. Knowledge representation techniques have
been a part of computer vision research from the begin-
ning (for example see [Winston 1975, McKeownet al.
1985, Draperet al 1989]). One difference is that this
project combines an existing powerful knowledge rep-
resentation system with relatively mature computer vi-
sion programs and techniques. This project will form
the basis for incorporating knowledge representation
technology in future computer vision research.

In order to study the knowledge representation is-
sues directly, we decided to transform an existing pro-
gram for runway detection and analysis into one built
using the Loom system and declarative programming
techniques. This strategy has several advantages. First,
we know that the algorithm works, and second, we can
directly explore the benefits of using knowledge repre-
sentation technology. This paper will discuss some of
the issues of declarative programming, briefly describe
the airport analysis system, and present results of the ef-
fort in incorporating knowledge representation in com-
puter vision.

2 Declarative Programming
The key approach in VEIL is the application of de-

clarative programming techniques to vision processing,
leveraged by the reasoning capabilities of the Loom
knowledge representation system. A declarative speci-
fication of an application (or even a portion of an appli-
cation) provides a formal, semantically well-founded
description that offers numerous benefits. Such a speci-
fication

• is more readable and easier to maintain than a pro-
cedurally-specified program;

Knowledge Representation for Computer Vision: The VEIL Project

Keith Price* Thomas Russ, Robert MacGregor
Institute for Robotics and Intelligent Systems USC/Information Sciences Institute

University of Southern California 4676 Admiralty Way
Los Angeles, California 90089-0273 Marina del Rey, CA 90292-6695

price@usc.edu tar@isi.edu

• is subject to automatic validation and verification
techniques;
• represents a high-level language specification. Thus,
it does not rely on a specific choice of data structures.
Algorithms are specified by the heuristic rules they
employ and/or the changes they effect rather than by
how they operate;
• can be shared and reused by other applications.

3 Relation of VEIL to IUE
The Image Understanding Environment (IUE) rep-

resents a major step towards the introduction of shar-
able object oriented specifications into the vision do-
main. The intended domains of the IUE and VEIL have
some overlap, but the IUE explicitly does not consider
higher-level knowledge representation issues or reason-
ing techniques.

Loom provides a very expressive domain model-
ling language, an integrated suite of deductive reasoners
(for performing general symbolic processing), and an
environment for creating, editing, viewing, and saving
knowledge base objects.

4 Airport Example
We developed a project to explore the use of stan-

dard knowledge representation techniques in computer
vision. The goals of the project include improvements
in both computer vision and knowledge representation
techniques. To this end, we started from a relatively ma-
ture application and incrementally changed the program
to replace procedural specifications of knowledge with
declarative representations of knowledge.

Detection and analysis of aerial views of airports
provide the first application for Loom. This application
defines primitive concepts for such objects as runways,
center stripes, blast pad markings, distance markings,
and taxiways. [Huertas,et al. 1990]

Airports are described by a generic model: a collec-
tion of generic runways, which are long thin ribbons
with markings (smaller ribbons) in specific locations.
Our system locates potential runways through a se-
quence of filtering and grouping operations followed by
a hypothesis verification step. Since these are described
in detail in earlier work, we will give only a brief de-
scription of these techniques in this paper.
4.1 Runway Hypothesis Generation

The basic steps in finding runway hypotheses
(which are also used for the taxiway hypothesis genera-
tion) are:

• Generate edges using e.g., the Canny edge detector
[Canny 1986]. Find connected sequences of edge ele-
ments and form straight line segments from these
curves [Nevatia & Babu 1980]. Two sets of edges and
line segments are generated, one with a relatively
large mask (size of 9) and high threshold (strength of

10) for runway hypotheses and the other with a small-
er mask (size of 7) and lower thresholds (8) for mark-
ings. These result in 25,000-90,000 line segments for
typical images.
• Group straight line segments into anti-parallel pairs
(that indicate ribbons), called apars. These pairs are
limited by width (one set for markings is narrow,
about 1 to 12 pixels, and the other set for potential
runways is much wider, around 20 to 60 pixels).
These widths are based on very rough approximations
of the image scale and the generic description of the
possible runways (which have defined limits on
widths) and markings (which have very specific
widths). The program generates 18,000 to 35,000
apars for the images.
• Find dominant directions using a histogram of apar
directions. The apar is weighted by its length in the
histogram accumulation. The histogram should have
a few very dominant peaks, which correspond to run-
way directions. The later processing is applied to se-
lected apars for one direction at a time (except for
taxiways) which greatly reduces the computation
time. Similar histogram analysis on widths could be
used to further restrict the valid runway widths, but is
 not needed. This reduces the set of apars from 18,000
to 1,000 to 3,000 for airports with runways in multiple
directions (Boston). The reduction in numbers is sim-
ilar for other examples, but much less pronounced for
airports with all runways in the same direction (Los
Angeles).
• Eliminate apars contained within larger ones. This
noise-cleaning step reduces the number of elements to
analyze. The extra apars, which are eliminated, have
many causes, but most are caused by the markings
(i.e. an apar formed by the two sides of the runway,
and two more formed by the side and the center
stripe). Figure 1 illustrates this operation. Typically,
about one-third of the apars survive this filtering.
• Join apars that share a common line segment. These
breaks in large apars are caused by a gap on one side.
This operation maintains colinearity (since the line

Figure 1. Eliminate the small Apar contained within the
larger one.

segment is straight) and creates new merged frag-
ments that were not in the original image data. After
this step, reapply the previous step to eliminate con-
tained apars. Figure 2 shows how this operation
works, reducing the total number of apars by about
10% to 15%. At this point a filtering on aspect ratio is
applied to remove very short hypotheses from further
consideration (ratio of length to width less than 1).
This removes about half of the remaining hypotheses
(with about 150 to 250 remaining).
• Merge colinear apars across gaps. The gaps are
formed by missing edge and apar data, by actual
crossing runways or other occlusions. This step also
creates new merged fragments. The gap must be ana-
lyzed to determine if the merger is valid (e.g. taxiways
do not cross runways). This step has the potential for
serious errors if the allowed gaps are too large (or too
small) and if the definition of colinear allows the hy-
pothesis direction to drift. Figure 3 shows this opera-
tion. This reduces the total number of fragments to
roughly two-thirds of the previous number. A second
aspect ratio filtering (greater than 10) is applied here
to get the final hypotheses (for the Boston image 4 or
5 remain for each of the three directions).

These filtering operations depend only on a generic
description of the runway and are all relatively efficient
operations given the right data structures (especially

Figure 2. Merge Apars that contain a common segment.

Figure 3. Merge colinear Apars across gaps.

spatial index). In the original reports on this effort, the
run times were very large. Most of the reduction came
from using data structures such as the spatial index to
greatly reduce searches through the data.
4.2 Runway Hypothesis Verification
The verification step requires analyzing the hypotheses
to find the specific markings. Figure 4 illustrates the
markings for an instrument runway. The dimensions
and spacings are given in feet. Each marking would ap-
pear in the image as an apar of a specific size (e.g. 30
feet wide and 150 feet long). Using an initial scale gives
the size range for each marking apar an indication of its
position relative to other markings and relative to the
runway hypothesis.

First the true ends of the runways must be located.
These are indicated by the threshold marks (top left of
Figure 4). Rather than find the marks themselves, it is
easier to find the apar in the center of the runway formed
by the gap between the two marks. The threshold mark
is located by searching along the center line of the run-
way hypothesis to find the relatively dark apar of this
gap. Once the threshold mark is found the other distance
marks are located relative to it. Each mark is located by
looking for apars in the appropriate locations and select-
ing according to the description of the marking.

Center lines and side stripes are found by looking
for marks in specific locations relative to the runway hy-
pothesis (in the center, along either side). Side stripes
are very narrow (roughly 1 pixel) so they tend to break
up into many small pieces.
4.3 Refinement of Hypotheses

The initial markings are located using the large set
of apars generated by the global edge detection process
at the beginning. This is sufficient for finding the well-
defined markings, but misses many of the marks. More
markings are located by reapplying the edge, line and
apar finding procedures on small windows of the image
(and using a replicated version of the image so that

150’ 150’75’

75’ 75’ 75’ 75’
500’ 500’ 500’

500’ 500’ 500’

30’6/5’

144’16’
12/3’

72’72’

80’

Figure 4. Markings on an instrument runway. From the top
left these are referred to as, threshold mark, touchdown
marks, big distance marks, and small distance marks (4
pairs).

small marks can be more readily found). Since some
marks have been located, the image scale can be deter-
mined more precisely and the expected location of the
new marks can be specified more exactly. The same de-
scriptions of the marks are used to determine if the ex-
tracted apars are appropriate.

Additional refinements include merging the many
side stripe fragments using the same procedure used for
runway hypotheses, which reduces the number of indi-
vidual side stripe fragments to one-tenth of the original
numbers. The updated scale information is also used to
eliminate distance marks that were within the original
ranges, but are not close enough when the scale is
known more accurately.

In the initial implementation, all the size and posi-
tion information was specified directly in the extraction
and analysis procedures. The first part of this project re-
wrote these procedures to use Loom to describe the
markings (sizes, relative positions and position on the
runway). This simplified the implementation (by reduc-
ing the number of procedures) and moved all the de-
scriptions into a more understandable form (i.e. the
Loom descriptions). Figure 5 gives the Loom descrip-
tion for big distance marks (called this by the program
because of the physical size of the marking). From this,
we know that abig-distance mark is a type ofgeneric-
mark (which in turn has several roles (or slots)). We also
know the distance between this marking and other
marks and the spacing (across the runway) between
pairs of big distance marks. This shows the basic prop-
erties of the marking and the relations between it and
other markings. Some properties and relations could be
described as relations to the underlying runway hypoth-
esis, but these geometric relationships would require
extensions to Loom.

5 Loom Implementation
In the basic implementation of the runway analysis pro-
grams, the Loom language supports:

• the specification of definitional classes, such as the
minimum runway length and types of markings that
define a “precision instrument runway”;

Figure 5 Loom description for Big Distance Marks.

(tell (create big-distance generic-mark)
 (about big-distance
 (width-in-feet 30)
 (length-in-feet 150)
 (distance-between touchdown 500)

(distance-between small-distance 500)
(distance-between threshold 1000)
(spacing-between 102)
(distance-between touchdown 500)))

• the specification of constraints on objects, such as
the required distance between various types of mark-
ings, or the minimum width of a runway.

Loom concepts can be used to describe different
classes of runways based on quantitative (and qualita-
tive) differences in the set of markings. These are illus-
trated in Figure 6, which shows the basic runways, and
Figure 7, which shows the description of a good run-
way.

These Loom concepts provide the basic classifica-
tion of runways located in the image. The advantages of
using a knowledge representation like Loom can be il-
lustrated by the results of this experiment.

Figure 6 Loom concepts for different runways

(loom:defconcept a-runway
 :roles (runway-object))
(loom:defconcept a-runway-taxi
 :is (:and a-runway
 (:at-least 4 has-center-line-mark)
 (:at-least 2 has-side-stripe-mark)))
(loom:defconcept potential-runway
 :is (:and a-runway-taxi
 (:at-least 1 has-threshold-mark)
 (:at-least 1 has-touchdown-mark)
 (:at-least 1 has-small-distance-mark)
 (:at-least 1 has-big-distance-mark)))

Figure 7 Loom concepts for a good runway

(loom:defconcept good-begin-runway
 :is (:and potential-runway
 (:at-least 1 has-threshold-mark

 begin-mark)
 (:at-least 1 has-touchdown-mark

 begin-mark)
 (:at-least 1 has-big-distance-mark

 begin-mark)
 (:at-least 2 has-small-distance-mark

 begin-mark)))
(loom:defconcept good-end-runway
 :is (:and potential-runway
 (:at-least 1 has-threshold-mark

 end-mark)
 (:at-least 1 has-touchdown-mark

 end-mark)
 (:at-least 1 has-big-distance-mark

 end-mark)
 (:at-least 2 has-small-distance-mark

 end-mark)))
(loom:defconcept good-runway
 :is (:and good-end-runway

good-begin-runway))

When these kinds of knowledge are moved out of
the procedural representations (in this case in Lisp) into
the declarative specification of Loom, the upgraded ap-
plication becomes easier to comprehend. The descrip-
tions are explicitly represented by the Loom concepts
rather than coded in various programs and these de-
scriptions are used by all the programs. Although some
advantages could be obtained by using appropriate data
structures directly in Lisp, Loom provides both the pro-
gramming style and the retrieval mechanisms that lead
to easier comprehension.

The knowledge is now in a more accessible form,
which helps make it easier to extend and maintain. The
declarative specification makes dependencies explicit
rather than keeping them hidden. These dependencies
are more than the inheritance of object descriptions (as
in CLOS) since a runway becomes an excellent runway
by virtue of changes in its descriptive markings rather
than changes in the object class.

The descriptions are easier to share and reuse (be-
cause domain attributes are now formally specified in a
language with a well-defined semantics), and the imple-
mentations become smaller when several functions are
collapsed into a single one. The programs for all dis-
tance markings were collapsed into a single one after
the conversion to Loom.

In the earlier implementation, the refinement oper-
ations were under direct user control. By using Loom
retrieval mechanisms it is easier to automatically
choose which runway hypothesis and which markings
need more analysis, either by eliminating extra or in-
valid markings or by searching specifically for more
markings of that type.

6 Reasoning Aspects
Converting to a Loom-based application makes new
kinds of reasoning available to a developer. Loom pro-
vides a query language that operates over the objects,
classes, and definitions in an application. In addition to
allowing queries about the objects in the domain, Loom
also allows meta-queries about the definitions of class-
es. The meta-level opens the possibility of building a
more introspective reasoner.

The Loom production rule facility offers a modular
means for defining such things as the heuristics that im-
plementobject detectors. The Loom constraint checker
computes whether a hypothesis generated by an object
detector satisfies a set of domain constraints. When con-
ditions specified by a production rule are met, the rule is
executed, thus allowing options for alternative control
of the processing. At this time, we have not implement-
ed significant production rules in the program.

7 Status and Results
The current system contains the automatic generation of

runway hypotheses, and finds markings using the initial
set of potential markings (i.e. the thin apars). An initial
filtering is applied to the hypotheses (based on whether
any valid markings are found). Further automatic re-
finements include finding more distance markings, ver-
ifying the threshold mark (which delineates the end of
the runway) and updating the image scale (i.e. feet per
pixel). The execution times are roughly a minute (Sun
Sparc 10) for the initial hypothesis and initial set of
markings. The refinement times depend on how many
new markings must be found (and especially on side
stripe and center lines since these require a search along
the length of the hypothesis). As an example of our re-
sults, we show the selected runways from the Boston
image in Figure 8. All 4 runways are classified asexcel-
lent (i.e. better than thegood runway of Figure 7). Both
ends of all runways are in the image, but the borders are
cut off in this display. This image is the easiest in our set
of images and all the runways are found clearly. The ad-
ditional very short runway is not indicated since it does
not have the distance marks.

Figure 9 shows the selected runways for one of the
images for Los Angeles. The left side of the bottom two
runways is not in the image so these have possible valid
markings on only one end. The markings themselves are
not as clear as for Boston and, overall, fewer are found.
Figure 10 shows the only runway that was determined
to beexcellent by the same criteria as in the Boston im-
age. In this case the second of the upper runways is
missing a distance mark at 2500 feet.

8 Future Directions
Our future work (on the computer vision side) will in-
clude:

• exploring how far we can push Loom to the lower
levels of the processing (i.e. turning apars into runway
fragments and hypotheses);
• building Loom implementation for analysis of air-
ports at higher levels (i.e. location and analysis of
taxiways, aircraft, and functions of buildings); and
• implementing building detection programs in Loom.

 Loom is a general purpose symbolic reasoner.
Loom’s strong point is reasoning about domain facts
and recognizing instances based on those facts. The rec-
ognition task that VEIL undertakes involves searching
for evidence of the existence of structures known to ex-
ist in runways. This involves reasoning by reference to
a prototype of a runway. Loom could be enhanced by
the addition of support for reasoning with concept pro-
totypes. This enhancement would not only benefit
VEIL, but would be useful in many other domains as
well.

To more fully exploit Loom’s existing symbolic
reasoning capabilities within a vision application, the
VEIL project will lead to extensions of Loom to per-

Figure 8 Boston Logan image with potential runways and their markings. The image has been brightened to make the
markings display more visible.

Figure 9 Los Angeles image with potential runways and their markings. The
image has been brightened to make the markings display more visible.

Figure 10 Los Angeles International -- Excellent runway only.

form processing specifically for use by vision applica-
tions. The most fundamental of the planned extensions
will be in the area of spatial representation and reason-
ing. We will begin by adding to the (declarative) Loom
language constructs that express the kinds of spatial re-
lationships present in vision applications.

We will incorporate into the system implementa-
tions of existing spatial reasoning algorithms. A prima-
ry engineering challenge is to preserve the original per-
formance of the spatial reasoners within the more de-
clarative setting that Loom provides.

 We will be testing how well we meet this challenge
by recoding IRIS vision applications to use the new
Loom capabilities, and then comparing performance
between the original and Loom-based versions of the
same application.

REFERENCES

[Canny 1986] J.F. Canny, “A computational approach to
edge detection,”IEEE Transactions on Pattern
Recognition and Machine Intelligence, Vol. 8, No.
6, pp. 679-698, November 1986.

[Draperet al1989] B. Draper, R. Collins, J. Brolio, A.
Hanson, and E. Riseman, “The Schema System,”
International Journal of Computer Vision, Vol. 2,
No. 3, pp. 209-250, 1989.

[Huertaset al. 1990] A. Huertas, W. Cole, and R. Neva-
tia, “Detecting Runways in Complex Airport
Scenes,”Computer Vision, Graphics, and Image
Processing, Vol. 51,No. 2, pages 107–145, August
1990.

[MacGregor & Burstein 1991] R. MacGregor and M.
Burstein, “Using a Description Classifier to En-
hance Knowledge Representation,”IEEE Expert,
Vol 6, No. 3, pages 41-46, June 1991

[McKeown et al. 1985] D. M. McKeown, Jr., W. A.
Harvey, and J. McDermott, “Rule Based Interpreta-
tion of Aerial Imagery,”IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol 7,No.
5, September. 1985, pp. 570-585.

[Mundy et al. 1993] J. Mundy and The Gang of Ten,
“The Image Understanding Environment: Over-
view,” in Proc. ARPA Image Understanding Work-
shop, Washington, DC, April 1993, pp. 283-288.

[Nevatia & Babu 1980] R. Nevatia and K. R. Babu,
“Linear Feature Extraction and Description,”
Comp. Graphics and Image Processing, Vol. 13,
1980, pp. 257-269.

[Winston 1975] P. H. Winston, “Learning Structural De-
scriptions from Examples,” inThe Psychology of
Computer Vision, P. H. Winston, Ed., New
York:McGraw Hill, 1975, Chapter 5.

