
An Implementation of the Reliable Data Protocol for Active
Networking

Ted Faber

USC/ISI
4676 Admiralty Way

Marina del Rey, CA 90292
faber@isi.edu

,

1. Introduction

The Active Congestion Control/Active Reservation Protocol (ACC/ARP) project has chosen to
implement the Reliable Datagram Protocol (RDP)[1,2] as a tool for exploring active congestion control
implementations. Thisdecision was motivated by the desire to have easy access to the entire transport pro-
tocol at the endpoints as well as the active code running in routers.The Internet’s most used transport, the
Transmission Control Protocol (TCP)[3], is usually implemented inside the endpoint’s operating system.
Although that code is accessible in many operating systems, the programming environment is considerably
more hostile than user space.Rather than implement TCP in user space in an active endpoint, the project
chose the simpler RDP.

ACC/ARP is primarily implementing RDP to experiment with using active networking techniques for
congestion control, specifically using ACC[4]. Secondaryreasons include having a native Java implemen-
tation of a reliable transport that ACC/ARP and ARP can use for experiments. Becausethe RDP imple-
mentation is a research vehicle, the implementation has focused on the projects’ specific research agenda
rather than on providing a production protocol.

Although it is simpler that TCP, RDP is an interesting and useful transport protocol.It is packet-
based, rather than byte-stream-based, which simplifies much of the data handling.Under RDP connection
termination has different semantics than under TCP; data sent but unacknowledged on an RDP connection
is not resent after the connection is closed.

RDP has some features TCP does not.It allows for unsequenced delivery of packets, which TCP
cannot − there is no way to reorder out-of-order bytes in a stream.Because RDP’s data guarantees are
looser than TCP’s, particularly once a connection is closed, it makes more status available to the user.
Internally, RDP uses selective acknowledgments as well as cumulative acknowledgments.

Although RDP does not specify a congestion control system, it is amenable to a TCP-like congestion
control system[5].Because the ACC/ARP project will be experimenting with congestion controls, the free-
dom to try new ideas without violating specifications or recoding an existing implementation is attractive.
In modern TCP implementations, the congestion control code pervades the implementation.A conceptu-
ally small change to the TCP congestion control algorithms may require changing code in many modules
and many files of the operating system source.A new RDP implementation will avoids that pitfall.

ACC/ARP is making use of the ARP project’s Active Signalling Protocol Execution Environment
(ASP EE)[6] and virtual networking system (VNET).ASP provides a consistent programming model,
access to Active Networks Node OS functionality, dynamic application extensions, application isolation,
and a virtual network, VNET. Because ASP is a Java environment, the ACC/ARP RDP implementation is
written in Java. This paper describes the implementation in terms of the Java classes and interfaces that
make it up.

As an Active Networking EE, ASP supports running multiple concurrent Active Applications (AAs).
AAs implement network services, e.g, the RSVP reservation protocol[7,8]. ASP starts such AAs in
response to packet arrivals or at router configuration time, demultiplexes packets to them, and ensures that

-2-

they do not interfere with each other. AAs can also be dynamically extended under ASP, allowing new pro-
tocol features to be added on the fly. RDP is generally used as a component by AAs.

The following sections describe the RDP protocol, explain the ASP/Java implementation of it, and
discuss some implementation choices in the ACC/ARP implementation that are not fully covered in the
specification.

2. RDP Overview

RDP is a packet-based, reliable transport protocol that allows for sequenced or unsequenced delivery
of packets. Itcurrently has no congestion control specified.The IETF considers it an experimental proto-
col, and as such is described in 2 RFCs[1,2].

RDP service is packet-based. Datais sent and received in contiguous chunks, which are the same
size to sender and receiver. Applications must be able to deal with data in packet-sized quanta rather than
breaking it up arbitrarily, but in many cases this is acceptable.RDP is packet-based because it makes the
protocol simpler.

RDP provides reliability by resending lost packets, which are detected by acknowledgments from the
receiver. The retransmission system is a standard sliding window with a go-back-n retransmission scheme.
Both cumulative acknowledgments and selective acknowledgments are used.Selective acknowledgments
are called extended ACKs in the RDP specification.Packets that are not acknowledged in a timeout period
or that the protocol can deduce never arrived due to gaps in the selective acknowledgments are resent.
Although RDP does not specify how to set the timeouts, the ACC/ARP implementation estimates the round
trip time of the connection and uses that estimate to set the retransmission timer.

Although RDP delivery is reliable, the endpoints can specify whether the arriving packets should be
delivered to the application in order or not.In applications for which packets order is not important, such
as displaying an image, this can provide a speedup or at least a perceived speedup.

RDP does not currently provide congestion control, although we are in the process of adding not only
congestion control, but congestion control that takes advantage of dynamically loaded code in the interme-
diate routers.This work is in progress.

RDP differs from TCP because RDP provides packet-based service and has simpler semantics on
connection close.Packet-based service means that both sender and receiver must deal with data in arbi-
trary-sized pieces, unlike a byte-stream protocol.In practice many applications can use the packet model
directly, and those that cannot can use an intermediate library. One such intermediate library is the VNET
interface to RDP described in Section 3.3.

When an RDP connection is closed, the protocol makes no further efforts to deliver packets that have
been passed to the protocol implementation, but have not yet been acknowledged. Unlike TCP, RDP does
not guarantee that all packets passed to one endpoint’s implementation are delivered to the other endpoint’s
implementation. Thisis another case where the RDP protocol chose simplicity of protocol implementation
over a feature that not all applications need.

Practically, this means that if an endpoint requires that all its packets are received by the other end-
point, that endpoint must close its connection only when receipt of all packets has been confirmed.RDP
specifies that this information must be made available to applications.

Although RDP close semantics differ from TCP in the above manner, RDP, like TCP, implements a
CLOSE_WAIT state that prevents 2 connections from being established between the same host port pair too
quickly. The purpose is to avoid starting a second connection which could accept data still in flight from
the first connection[9].

3. RDP Under ASP

There are 2 interfaces to the RDP protocol under ASP. There is a stand-alone implementation, in
which AAs use the RDP implementation classes directly, and a VNET interface that uses RDP to emulate
Java’s reliable byte-stream sockets. We will describe the stand-alone interface first, and then the glue used
to connect the stand-alone implementation to VNET.

-3-

3.1. Stand-alone Implementation

The RDP implementation is visible to AAs as a collection of classes that embody packets, RDP con-
nections, and connection status.These classes arePacket, RDPConnection, and RDPStatus. All
classes described in this section are fully documented in the javadoc documents that come with the source.

ThePacket class provides an interface to the data chunks that RDP sends.It provides methods to
associate aPacket with a byte array, to add or trim bytes from thePacket efficiently, and to insert or
remove various sized integers from thePacket. Integers are stored inPackets in network byte order.

TheRDPConnection connection is the AA’s main interface to RDP. It provides methods to listen
for connections from other hosts, to connect to other hosts, to send and receive packets, to examine a con-
nection’s status, and to close a connection.These methods are summarized below.

Method Description

open A static method to create connections.This call sets connec-
tion parameters and binds to addresses.Successful passive
open calls return anRDPConnection that is listening for
incoming connections.Active opens return anRDPConnec-
tion that has connected to another endpoint.Constructors
are not directly used because open may block or return an
error.

accept When called on a listeningRDPConnection, this returns a
connectedRDPConnection. If no other endpoint has con-
nected, this call blocks until a connection is formed.

recv Returns the next queuedPacket, if any.
send Sends the given Packet to the other endpoint.
status Return anRDPStatus object that summarizes the connec-

tion state.
close Terminate the connection immediately. As mentioned in Sec-

tion 2, this has harsher semantics than a TCP close.

TheRDPStatus object has no methods, and its members are:

Member Description

state The connection state, which can be used to tell if the other
side has closed a connection, or if there has been a protocol
error.

unacked Number of packets sent but unacknowledged.
queued Number of packets received but not delivered to the AA.
recvmax Maximum size of an incoming packet.
sendmax Maximum size of an outgoing packet.

An RDPStatus object is used to determine when it is safe to close a connection or to determine that the
other side has closed it.It also allows the application to size its packets to meet the constraints imposed by
the other endpoint during connection establishment.

Internally there are several other classes used by RDP. These classes are used to more easily manipu-
late packets, to provide a general timeout facility, and to send keepalive packets.

TheRDPPacket class extendsPacket to make constructing and parsing RDP header information
easier. There are actually several further subclasses to make construction of various types of packets easier.
For example there is a class to create an otherwise empty packet that acknowledges a given sequence num-
ber.

RDP needs to schedule three types of events: packet retransmissions,CLOSE_WAIT transitions, and
keepalive packets. Theseev ents are scheduled by theRDPTimer class.RDPTimer’s schedule method
arranges for thetimeout method to be called on one of its arguments after a specified time.schedule
can schedule one call or arrange fortimeout to be called periodically. The object passed toRDPTimer

-4-

must implement theTimeable interface, which defines thetimeout method thatRDPTimer will call.
RDPTimer also implements anunschedule that cancels any pending calls.

The following objects implementtimeout in this implementation:

Class Timeout Function

RDPPacket Resend the packet
RDPConnection Change state fromCLOSE_WAIT to

CLOSED
RDPKeepalive Send a keepalive packet

Timeouts for eachRDPPacket are scheduled when the packet is sent reliably and unscheduled
when an acknowledgment arrives. Resendtimeouts repeat themselves until the packet is acknowledged.
Timeouts for theRDPConnection are scheduled when the other end of the connection closes, and
unscheduled when theRDPConnection successfully changes state.An RDPConnection might fail to
change state if there is unread but received data on the connection.

TheRDPKeepalive object exists only to periodically resend the last acknowledgment unreliably to
ensure that the connection remains open when both sides are idle.By resending a packet periodically, it
avoids the possibility that a connection-closing packet is lost; receiving the acknowledgment triggers a new
close packet. EachRDPConnection object allocates anRDPKeepalive object and schedules repeat-
ing events for it when theRDPConnection is created.

3.2. Stand-alone Example

The following example illustrates the implementation.These applications show the calling sequence
for the RDP implementation.They hav ebeen pruned of some essential details of running in the ASP envi-
ronment and error handling, and are not robust. They are intended to show the basics of the implementa-
tion. To write running code, consult the documentation available with the RDP source.

The example shows a sender and receiver that exchangenpkts packets (npkts has been agreed on
out-of-band) and then the receiver closes the connection.The receiver must run first and be waiting for the
sender’s active open. Thereceiver also illustrates the feature that a thread canwait on theRDPConnec-
tion object itself for a notification of packet arrival or state change.

3.3. VNET Interface

VNET provides the Java sockets interface between AAs and the ACC/ARP RDP implementation.It
does the buffering and protocol conversion work to make a sequence of RDP packets look like a byte
stream.

The VNET interface exports ServerSocketV, ClientSocketV, and SocketV objects that
mimic the Java socket interface. AServerSocketV passively opens anRDPConnection object and
provides the familiar interface to it. A client connects to it by creating aClientSocketV which does the
active open. Callingaccept on theServerSocketV returns aSocketV which exports a byte stream
interface. TheSocketV provides the samesend/recv interfaces as TCP sockets in the standard Java
environment.

4. Implementation Notes

This implementation applies a loose interpretation to some of the details of the RDP specifica-
tion[1,2] because of our operating environment. Thisimplementation does not strictly enforce per-connec-
tion queueing limits, aggressively seeks half-open connections, and addresses lost SYN acknowledgments
explicitly. Some of these interpretations deal with details of the specification,

Because the same memory resources are used by the AA and the RDP implementation, RCV.MAX,
the RDP per-connection queue size, is initialized to the window size, and not strictly respected.A connec-
tion can queue as many packets as ASP allows RDP to allocate.In a system where kernel buffer space is
allocated differently from process virtual memory, this limitation is more important.

-5-

class Sender {
public void sender() {
RDPConnection c;
RDPStatus s;
Packet p;
int i,j;

c = RDPConnection.open(
RDPConnection.ACTIVE_OPEN,
RDPConnection.ANY_PORT,
(short)1500, to,
RDPConnection.SEQUENCED);

for (i = 0; i < npkts; i++) {
p = new Packet(20);
p.putInt(i,0);
c.send(p);

}
s = c.status();
while (s.state!=RDPConnection.CLOSED) {
synchronized(c) {

c.wait();
}
s = c.status();

}
}

}

class Receiver
public void receiver() {

RDPConnection c, d;
RDPStatus s;
Packet p;
int i,j;
PrintWriter out;

c = RDPConnection.open(
RDPConnection.PASSIVE_OPEN,
(short)1500,
RDPConnection.ANY_PORT,
null,
RDPConnection.SEQUENCED);

d = c.accept();
for (i = 0; i < npkts; i++) {

s = d.status();
while (s.queued == 0) {
synchronized(d) {

d.wait();
}
s = d.status();

}
p = d.recv();
System.out.print(p.getInt(0)+"\n");

}
d.close();
c.close();

}
}

The RDP specification says that connections should avoid probing for half-open connections, but the
ACC/ARP implementation is relatively aggressive. The most common cause of a half-open connection is
when a one endpoint closes a connection and the RST packet that indicates to the other endpoint that the
connection is closed is lost.The specification advises that application activity will generally detect half-

-6-

open connections, and that the protocol implementation should only detect and remove themin extremis, to
avoid overloading the network. TheACC/ARP implementation is more aggressive because modern net-
works tend to have sufficient bandwidth that an occasional extra packet is not excessive overhead. Further-
more, keep alive packets are easy to implement while special-case code to identify resource starvation due
to excessive numbers of half-open connections is more expensive.

RDP connection establishment can fail if the packet acknowledging the SYN packet that requests a
new connection is lost.Because acknowledgments are sent unreliably, the lost packet is never resent, and
because the connection hasn’t been established, the SYN packet is not resent either. The specification is
silent on how to address this issue.

The ACC/ARP implementation sends the SYN packet reliably. SYN_RCVD state actions have been
altered to simply resend the original acknowledgment if the arriving SYN packet has the same parameters
as the original.The implementation should set an upper bound on the number of times to resent the SYN
packet, although the current code does not.

5. Conclusions

Our experience with RDP to date has been mostly positive. It has met the projects’ needs for a sim-
ple transport protocol, and promises to be a good platform for congestion control experiments. RDPhas
been successfully used to load classes for the ASP protocol versioning system[6].

Conversely the ease of implementing RDP and integrating it with the VNET system has demon-
strated that ASP is a reasonable development environment. ASPmade a straightforward implementation of
RDP easy because it basically stayed out of the implementor’s way except where ASP services were
required. Theintegration with VNET was a done seamlessly by a different implementor.

RDP shows promise as a research vehicle for active networking.

References

1. David Velten, Robert Hinden, and Jack Sax, “Reliable Data Protocol,” RFC-908 (July 1984).

2. CraigPartridge and Robert Hinden, “Version 2 of the Reliable Data Protocol (RDP),” RFC-1151 (April 1990).

3. JonPostel, ed., “Transmission Control Protocol,” RFC-793/STD-7 (September, 1981).

4. TheodoreFaber, “ACC: Active Congestion Control,” IEEE Network, vol. 12, no. 3 (July/August 1998).

5. Van Jacobson, “Congestion Avoidance and Control,” Proc. SIGCOMM Symposium on Communications Architectures and Pro-
tocols, pp. 314-329, ACM SIGCOMM, Stamford, CA (Aug 16-19 1988).

6. BobBraden, Alberto Cerpa, Ted Faber, Bob Lindell, Graham Phillips, and Jeff Kann, “ASP EE: An Active Execution Environ-
ment for Network Control Protocols,” Asp Documentation (1999), available electronically from
http://www.isi.edu/active-signal/ARP/DOCUMENTS/ASP_EE.ps.

7. Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala, “RSVP: A New Resource ReSerVation
Protocol,” IEEE Network Magazine, vol. 9, no. 4, pp. 8-18, IEEE (September 1993).

8. R.Braden, ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP) − Version 1 Functional
Specification,” RFC-2205 (September 1997).

9. TheodoreFaber, Joe Touch, and Wei Yue, “The TIME-WAIT State in TCP and Its Effect on Busy Servers,” Proceedings of
IEEE INFOCOM, pp. 1573-1584, IEEE, New York, New York (March 21-25 1999).

