An Implementation of the Reliable Data Protocol for Active
Networking

Ted Faber

USCIISI
4676 Admiralty Vay
Marina del Rg, CA 90292
f aber @ si . edu

1. Introduction

The Actve Congestion Control/Actie Resenation Protocol (£C/ARP) project has chosen to
implement the Reliable Datagram Protocol (RDP)[1,2] as a toolxjoloeng actve mngestion control
implementations. Thidecision vas motvated by the desire to i@ easy access to the entire transport pro-
tocol at the endpoints as well as thewactiode running in routersThe Internes nost used transport, the
Transmission Control Protocol (TCP)[3], is usually implemented inside the endpgietating system.
Although that code is accessible in maperating systems, the programmingieznment is considerably
more hostile than user spadeather than implement TCP in user space in aneaetidpoint, the project
chose the simpler RDP

ACC/ARP is primarily implementing RDP toxgeriment with using aate retworking techniques for
congestion control, specifically usingC&[4]. Secondaryeasons include king a natve Jva implemen-
tation of a reliable transport thalC&/ARP and ARP can use foxperiments. Becauste RDP imple-
mentation is a researckehicle, the implementation has focused on the projects’ specific research agenda
rather than on prading a production protocol.

Although it is simpler that TGHRDP is an interesting and useful transport protodbis paclet-
based, rather than byte-stream-based, which simplifies much of the data haddiiley.RDP connection
termination has diérent semantics than under TCP; data sehubacknwledged on an RDP connection
is not resent after the connection is closed.

RDP has some features TCP does nbtallows for unsequenced dedry of paclets, which TCP
cannot — there is noay to reorder out-of-order bytes in a streaBecause RDR’ cata guarantees are
looser than TCR, particularly once a connection is closed, it esakiore statusvailable to the user
Internally RDP uses seleet acknovledgments as well as cumulatiacknovledgments.

Although RDP does not specify a congestion control system, it is amenable to a & Gidjistion
control system[5].Because the BC/ARP project will be xperimenting with congestion controls, the free-
dom to try nev ideas without violating specifications or recoding ®isteng implementation is attragt.

In modern TCP implementations, the congestion control codagesvthe implementatiorA conceptu-
ally small change to the TCP congestion control algorithms may require changing code imadates
and maw files of the operating system sour@enew RDP implementation will eoids that pitéll.

ACC/ARP is making use of the ARP projeciActive Sgnalling Protocol Egcution Erironment
(ASP EE)[6] and virtual netarking system (VNET).ASP praiides a consistent programming model,
access to Acte Networks Node OS functionalitydynamic application xdensions, application isolation,
and a virtual netark, VNET. Because ASP is avlewvironment, the £C/ARP RDP implementation is
written in Jaa. This paper describes the implementation in terms of the dasses and inteates that
male it up.

As an Actve Networking EE, ASP supports running multiple concurrent vec#\pplications (AAS).
AAs implement netwrk services, e.g, the RSVP ression protocol[7,8]. ASP starts such AAs in
response to paek arrivals or at router configuration time, demultipds packets to them, and ensures that



they do not interfere with each otheAAs can also be dynamicallxtended under ASRlowing nev pro-
tocol features to be added on the lRDP is generally used as a component by AAs.

The following sections describe the RDP protocadplain the ASP/da implementation of it, and
discuss some implementation choices in ti&CAARP implementation that are not fullyveoed in the
specification.

2. RDP Overview

RDP is a pacdht-based, reliable transport protocol thatvaidor sequenced or unsequencedvesyi
of paclets. Itcurrently has no congestion control specifidthe IETF considers it arxperimental proto-
col, and as such is described in 2 RFCs[1,2].

RDP service is paeit-based. Dat#&s sent and recegd in contiguous chunks, which are the same
size to sender and reeei. Applications must be able to deal with data in packzed quanta rather than
breaking it up arbitrarilybut in mary cases this is acceptabl®&DP is packt-based because it nezkthe
protocol simpler

RDP praiides reliability by resending lost paatk, which are detected by aclkriledgments from the
recever. The retransmission system is a standard sliding wingith a go-back-n retransmission scheme.
Both cumulatve acknovledgments and selee#i acknovledgments are usedselectve acknovledgments
are called etended ACKs in the RDP specificatiorPeackets that are not ackmtedged in a timeout period
or that the protocol can deduceveearrived due to @gps in the seleste aknovledgments are resent.
Although RDP does not specifywdo st the timeouts, the @C/ARP implementation estimates the round
trip time of the connection and uses that estimate to set the retransmission timer

Although RDP deliery is reliable, the endpoints can specify whether theiagipaclets should be
delivered to the application in order or ndn applications for which paeks order is not important, such
as displaying an image, this canyide a speedup or at least a peregigpeedup.

RDP does not currently primle congestion control, although we are in the process of adding not only
congestion control,ud congestion control that tak adantage of dynamically loaded code in the interme-
diate routers.This work is in progress.

RDP difers from TCP because RDP pites packt-based service and has simpler semantics on
connection closePacket-based service means that both sender and/eecetust deal with data in arbi-
trary-sized pieces, unkka lyte-stream protocolln practice may applications can use the patkmodel
directly, and those that cannot can use an intermediate lib@mg such intermediate library is the VNET
interface to RDP described in Section 3.3.

When an RDP connection is closed, the protocolesado further ébrts to delver packets that hee
been passed to the protocol implementatien,hHave ot yet been ackmadedged. Unlike TCR, RDP does
not guarantee that all pastls passed to one endpaénthplementation are dekred to the other endpoist’
implementation. Thigs another case where the RDP protocol chose simplicity of protocol implementation
over a feature that not all applications need.

Practically this means that if an endpoint requires that all its @tsclire receed by the other end-
point, that endpoint must close its connection only when receipt of alé{salbks been confirmed®kDP
specifies that this information must be madailable to applications.

Although RDP close semantics féif from TCP in the abh@ manner RDP, like TCP, implements a
CLOSE_WAI T state that preents 2 connections from being established between the same host port pair too
quickly. The purpose is tovaid starting a second connection which could accept data still in flight from
the first connection[9].

3. RDP Under ASP

There are 2 inteaices to the RDP protocol under ASFhere is a stand-alone implementation, in
which AAs use the RDP implementation classes direatig a VNET interce that uses RDP to emulate
Javas reliable byte-stream soets. W will describe the stand-alone intack first, and then the glue used
to connect the stand-alone implementation to VNET



3.1. Stand-alone I mplementation

The RDP implementation is visible to AAs as a collection of classes that emboadyspd&RP con-
nections, and connection statushese classes aRacket , RDPConnect i on, and RDPSt at us. All
classes described in this section are fully documented invédoadocuments that come with the source.

ThePacket class preides an intedce to the data chunks that RDP serltigrovides methods to
associate &#acket with a byte arrayto add or trim bytes from th@acket efficiently, and to insert or
remove various sized ingers from thd?acket . Integers are stored iRacket s in network byte order

The RDPConnect i on connection is the AA main interface to RDP It provides methods to listen
for connections from other hosts, to connect to other hosts, to send and packets, to &amine a con-
nections gatus, and to close a connectiofhese methods are summarized twelo

Method Description

open A static method to create connectionkhis call sets connec-
tion parameters and binds to addresseaccessful passs
open calls return aRDPConnect i on that is listening for
incoming connectionsActive gens return aRDPConnec-
ti on that has connected to another endpoi@tnstructors
are not directly used because open may block or return an
error.

accept When called on a listeningDPConnect i on, this returns a
connectedRDPConnect i on. If no ather endpoint has con-
nected, this call blocks until a connection is formed.

recv Returns the né queuedPacket , if any.

send Sends the gen Packet to the other endpoint.

st at us Return anRDPSt at us object that summarizes the connec-
tion state.

cl ose Terminate the connection immediatelfxs mentioned in Sec-

tion 2, this has harsher semantics than a TCP close.

The RDPSt at us object has no methods, and its members are:

Member Description

state The connection state, which can be used to tell if the other
side has closed a connection, or if there has been a protocol
error.

unacked Number of packts sent bt unacknwledged.

gueued Number of packts receied but not delvered to the AA.

r ecvmax Maximum size of an incoming paek

sendmax Maximum size of an outgoing pastk

An RDPSt at us object is used to determine when it is safe to close a connection or to determine that the
other side has closed ilt also allavs the application to size its patk to meet the constraints imposed by
the other endpoint during connection establishment.

Internally there are seral other classes used by RDFhese classes are used to more easily manipu-
late packts, to preide a general timeoua€ility, and to send &epalve paclets.

The RDPPacket class &tendsPacket to male constructing and parsing RDP header information
easier There are actually seral further subclasses to nmekonstruction of arious types of paeits easier
For example there is a class to create an otherwise emptetpthek ackneledges a gien ssquence num-
ber

RDP needs to schedule three typesvehts: paclet retransmission§LOSE_WAI T transitions, and
keepalve mckets. Thesevents are scheduled by tRBPTi ner class. RDPTi mer’s schedul e method
arranges for theéi meout method to be called on one of itgaments after a specified timechedul e
can schedule one call or arrangetfomeout to be called periodicallyThe object passed RDPTi ner



must implement th&i neabl e interface, which defines thted neout method thaRDPTi rer will call.
RDPTi ner also implements annschedul e that cancels gnpending calls.

The following objects implemertti meout in this implementation:

Class Tmeout Function
RDPPacket Resend the paek
RDPConnecti on Change state fromCLOSE WAI T to
CLOSED

RDPKeepal i ve Send a kepalve packet

Timeouts for eaciRDPPacket are scheduled when the patks sent reliably and unscheduled
when an ackneledgment arsies. Resendimeouts repeat themsely until the padat is acknwledged.
Timeouts for theRDPConnecti on are scheduled when the other end of the connection closes, and
unscheduled when tHRDPConnect i on successfully changes statdn RDPConnect i on might fail to
change state if there is unread keceved data on the connection.

The RDPKeepal i ve object «ists only to periodically resend the last ackiemigment unreliably to
ensure that the connection remains open when both sides ar8ydlesending a paek periodically it
avads the possibility that a connection-closing petdk lost; receing the acknaledgment triggers a e
close packt. EachRDPConnect i on object allocates aRDPKeepal i ve object and schedules repeat-
ing events for it when th&RDPConnect i on is created.

3.2. Stand-alone Example

The followving example illustrates the implementatiomhese applications shathe calling sequence
for the RDP implementationThey havebeen pruned of some essential details of running in the A8P en
ronment and error handling, and are notusib Thg are intended to shwthe basics of the implementa-
tion. To write running code, consult the documentatigalable with the RDP source.

The xample shws a sender and rewgei that e<changenpkt s paclets fpkt s has been agreed on
out-of-band) and then the reeei closes the connectionThe receaier must run first and be aiting for the
senders active gpen. Therecever aso illustrates the feature that a thread want on theRDPConnec-

t i on object itself for a notification of paekarrval or state change.

3.3. VNET Interface

VNET provides the Jea ©ckets interfice between AAs and theCE/ARP RDP implementationit
does the bffering and protocol comrsion work to male a £quence of RDP paets look lilke a kyte
stream.

The VNET interfice &ports Server Socket V, C i ent Socket V, and Socket V objects that
mimic the Jaa cket interiice. ASer ver Socket V passively opens arRDPConnect i on object and
provides the &miliar interface to it. A client connects to it by creatingGhi ent Socket V which does the
active goen. Callingaccept on theSer ver Socket V returns aSocket V which exports a byte stream
interface. TheSocket V provides the sameend/ r ecv interfaces as TCP soets in the standard Vi
ervironment.

4. Implementation Notes

This implementation applies a loose interpretation to some of the details of the RDP specifica-
tion[1,2] because of our operatingv@nnment. Thismplementation does not strictly enforce4sennec-
tion queueing limits, aggressly seeks half-open connections, and addresses lost SY Nveekigoments
explicitly. Some of these interpretations deal with details of the specification,

Because the same memory resources are used by the AA and the RDP implementatdAXRCV
the RDP peconnection queue size, is initialized to the windize, and not strictly respected connec-
tion can queue as mapackets as ASP alles RDP to allocateln a system whereéeknel luffer space is
allocated diferently from process virtual memoihis limitation is more important.



cl ass Sender {
public void sender() {
RDPConnecti on c;
RDPSt at us s;
Packet p;
int i,j;

¢ = RDPConnecti on. open(
RDPConnect i on. ACTI VE_OPEN,
RDPConnect i on. ANY_PORT,
(short) 1500, to,
RDPConnect i on. SEQUENCED) ;
for (i =0; i < npkts; i++) {
p = new Packet (20);
p.putint(i,0);
c.send(p);
}
s = c.status();
whi | e (s.state! =RDPConnecti on. CLOSED) {
synchroni zed(c) {
c.wait();
}
s
}

= c.status();

}
}

cl ass Recei ver
public void receiver() {
RDPConnection c, d;
RDPSt at us s;
Packet p;
int i,j;
PrintWiter out;

¢ = RDPConnecti on. open(
RDPConnect i on. PASSI VE_OPEN,
(short) 1500,
RDPConnect i on. ANY_PORT,
nul |,
RDPConnect i on. SEQUENCED ) ;
d = c.accept();
for (i =0; i < npkts; i++) {
s = d.status();
while (s.queued == 0 ) {
synchroni zed(d) {
d.wait();
}
s = d.status();
}
p = d.recv();
System out. print(p.getint(0)+"\n");
}
d. cl ose();
c.close();
}
}

The RDP specification says that connections shaudidl gorobing for half-open connectiongjtithe
ACC/ARP implementation is relasly aggressie. The most common cause of a half-open connection is
when a one endpoint closes a connection and the RSEtpthek indicates to the other endpoint that the
connection is closed is losThe specification advises that application\aistiwill generally detect half-



open connections, and that the protocol implementation should only detect and tieenoin extremis, to
avad overloading the netark. The ACC/ARP implementation is more aggressiecause modern net-
works tend to hee sufficient bandwidth that an occasionatra paclet is not &cessve ovehead. Further
more, leep alve paclets are easy to implement while special-case code to identify resouredictadue
to excessve rumbers of half-open connections is maxpensve.

RDP connection establishment caiil ff the paclet acknavledging the SYN pacek that requests a
new connection is lost.Because acknadedgments are sent unreliaptiie lost packt is neer resent, and
because the connection hddmeen established, the SYN patks not resent eitheiThe specification is
silent on hav to address this issue.

The ACC/ARP implementation sends the SYN petcteliably SYN RCVD state actions h& been
altered to simply resend the original aclkhedgment if the arving SYN paclet has the same parameters
as the original. The implementation should set an upper bound on the number of times to resent the SYN
paclet, although the current code does not.

5. Conclusions

Our eperience with RDP to date has been mostly pasitit has met the projects’ needs for a sim-
ple transport protocol, and promises to be a good platform for congestion capgdhwnts. RDFhas
been successfully used to load classes for the ASP pro&rsibring system[6].

Corversely the ease of implementing RDP and dré¢ing it with the VNET system has demon-
strated that ASP is a reasonableditgpoment emironment. ASRAmade a straightforard implementation of
RDP easy because it basically stayed out of the implementay except where ASP services were
required. Thentegration with VNET was a done seamlessly by deliént implementor

RDP shavs promise as a researathicle for actre retworking.

References

1. David Velten, Robert Hinden, and Jack Sax, “Reliable Data Prctd®ieG-908 (July 1984).

2. CraigPatridge and Robert Hinden, &vsion 2 of the Reliable Data Protocol (RDRR;C-1151 (April 1990).

3. JonPostel, ed., “Tansmission Control ProtocoRFC-793/STD-7 (September1981).

4. Theodord-aber, “ACC: Active Gongestion Contrdl,|EEE Network, vol. 12, no. 3 (July/August 1998).

5. Van Jacobson, “Congestioivéldance and ContrdlProc. SGCOMM Symposium on Communications Architectures and Pro-

tocols, pp. 314-329, £M SIGCOMM, Stamford, CA (Aug 16-19 1988).

6. BobBraden, Alberto Cerpa,efl Faber Bob Lindell, Graham Phillips, and dé&fann, ‘ASP EE: An Actve Bxecution Ewiron-
ment for Netwrk Control Protocols, Asp Documentation (1999), @&ailable electronically from
http://ww.isi.edu/active-signal / ARP/ DOCUVENTS/ ASP_EE. ps.

7. Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Sheakd Daniel Zappala, “RSVP: A MeResource ReSeg¥ion
Protocol; |EEE Network Magazine, vol. 9, no. 4, pp. 8-18, IEEE (September 1993).
8. R.Braden, ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource &ie@drxobtocol (RSVP) —afsion 1 Functional

Specificatiorf, RFC-2205 (September 1997).

9. Theodord~aber, Joe Touch, and Wi Yue, “The TIME-WAIT State in TCP and Its Efct on Busy Seers; Proceedings of
|EEE INFOCOM, pp. 1573-1584, IEEE, NeYork, Nev York (March 21-25 1999).



