Network Routing Application Programmer’s Interface (API) and
Walk Through 9.1

Fabio Silva, John Heidemann and Ramesh Govindan
{fabio,johnh,govindan }@Qisi.edu

June 12, 2003

1 Introduction

I-LENSE data diffusion (at USC/ISI) and DRP (at MIT/LL) are both based on the core concept of
subject-based routing. Although there are some fundamental differences between these approaches,
we believe that both can be accommodated with the same Network Routing API.

An earlier version of this API was used by both network routing approaches, and was co-
authored by Dan Coffin and Dan Van Hook {dcoffin,dvanhook}@11.mit.edu.

This version of this document describes the current API as used by the I-LENSE implementa-
tion!. In addition to the Publish/Subscribe API, we introduce the Filter API in order to better
support in-network processing (e.g. caching/aggregation/mobile code) as well as the Timer API,
which allows support for event-driven applications.

Also, this document does not provide information on how to compile, install, and run diffusion.
Please refer to the distribution’s README file. For information about how to run diffusion in ns-2,
please refer to the directed diffusion chapter in the ns-2 documentation.

1.1 Recent changes to the API

Since the API’s last version, release 9.0.1, dated December 9st, 2002, the following changes have
been made:

e RMST, our new Reliable Multi-Segment Transport algorithm is now supported in the API
(see section 4.8 for details on the new NR::sendRmst function). RMST can be used to provide
guaranteed delivery for large objects. See section 3.5 for more details on RMST.

e GEAR, the Geographic and Energy Aware Routing algorithm, now supports forwarding mes-
sages to both geographic regions (cluster of nodes) or points (a single node). GEAR can
greatly improve diffusion’s efficiency when geographic information is available. Refer to sec-
tion 3.4 for more information on how to use GEAR and which attributes need to be changed
for using geographic points.

e In addition to two-phase pull and one-phase push, the publish/subscribe API now also sup-
ports one-phase pull. The one-phase pull algorithm is a good match for application scenarios

!This work was supported by DARPA under grant DABT63-99-1-0011 as part of the SCADDS project.

where a small number of sinks communicate with a large number of sources. In order to use
one-phase pull, applications will need to use the new NRAlgorithm attribute (see sections 4.2
and 4.4 for more information). For a comparison of these various algorithms, including a
description on when to use each of these, refer to section 3.

e The Filter API description has been revised, giving filter developers a better understanding
on how filter iteract and how to select priorities.

e Several of the sample applications/filters provided in our distribution have been updated
with several small features and fixes. In order to illustrate the use of GEAR, sample GEAR
applications were added to the distribution.

1.2 Future changes

We have iterated on this API and used it in various simulations, demos, paper experiments. As the
number of people using these API increase, and we experiment with new routing algorithms, we
expect that this API will evolve as a result of the experience gained with how naming and network
routing is used.

2 Network Routing API Overview

This version of the API has been improved to better support attribute creation, manipulation and
matching. We have introduced templates that facilitate the use of attributes. This API now uses
STL vectors to group a set of attributes that describe interests and data. Following is an overview
of the approach taken and a brief description of the use of these templates.

For a more detailed description about attributes and naming, see [2]. For more detail about
filter invocation, see [3].

2.1 Attributes and Attribute Factories

Data requests and responses are composed of data attributes that describe the data. Each piece
of the subscription (an attribute) is described via a key-value-operator triplet, implemented with
class NRAttribute.

e key indicates the semantics of the attribute (latitude, frequency, etc.). Keys are simply
constants (integers) that are either defined in the network routing header or in the application
header.

Allocation of new key numbers will be done with an external procedure to be determined.
Keys in the range 0-2999 are reserved and should not be used by an application.

e type indicates the primitive type that the key will be. This key will indicate what algorithms
to run to match subscriptions. For example, checking to see if an INT32_TYPE is EQ is a
different operation than checking to see if a STRING_TYPE is EQ. The available types are:

INT32_TYPE // 32-bit signed integer
FLOAT32_TYPE // 32-bit

FLOAT64_TYPE // 64-bit

STRING_TYPE // UTF-8 format

BLOB_TYPE // uninterpreted binary data

e op (the operator) describes how the attribute will match when two attributes with the same
type and key are compared. Available operators are: IS, EQ, NE, GT, GE, LT, LE, EQ_ANY.

The IS operator indicates that this attribute specifies a literal (known) value (e.g. a node
publishing data can use the attribute LATITUDE_KEY IS 30.456 to specify its location).
Other operators (GE, LE, NE, etc.) indicate a condition, which must be satisfied with an
IS attribute for a positive match (e.g. a LATITUDE KEY IS 30.456 attribute will match
the LATITUDE_KEY GT 25.34 condition, resulting in a positive match). Matching rules are
below.

This version of the API supports all operators for all types. Note however that for blobs the
API doesn’t know how the information is encoded and will perform a bit wise comparison
only (i.e. IS can be used to specify a literal blob value that can only be matched with the
EQ, EQ_ANY, and NE operators).

In addition, attributes have values. Values have some type and contents. Some values also have
a length (if it’s not implicit from the type). Keys, operators, type and length can be extracted
from an attribute via getKey/(), getOp(), getType() and getLen() methods. (see below for details).

2.2 Matching Rules

Data is exchanged when there are matching subscriptions and publications and the publisher sends
data. Filters receive messages that match a specified set of attributes. Since diffusion is based on the
core concept of subject-based routing, it is very important to make sure attributes in publications,
subscriptions and filters match.

For the Publish/Subscribe API, matches are determined by applying the following rules between
the attributes associated with the publish (P) and subscribe (S):

For each attribute Pa in P, where the operator Pa.op is something other than IS
Look for a matching attribute Sa in S where Pa.key == Sa.key and Sa.op == IS
If none exists, exit (no match)
else use Pa.op to compare Pa and Sa
If all are found, repeat the procedure comparing non-IS operators in S against IS operators in P.
If neither exits with (no match), then there is a match.

For example, a sensor would publish this set of attributes:
LATITUDE_KEY IS 30.455

LONGITUDE_KEY IS 104.1
TARGET_KEY IS tel

while a user might look for TELs by subscribing with the attribute:
TARGET_KEY EQ tel
or it might look for anything in a particular region with:

TARGET_KEY EQ_ANY
LATITUDE_KEY GE 30
LATITUDE_KEY LE 31
LONGITUDE_KEY GE 104
LONGITUDE_KEY LE 104.5

Filters, described later in Section 2.5, only use one-way matching. In this case, the matching
procedure just compares non-IS operators in the first set of attributes against IS operators in the
second set, calling it a match if this operation is successful. For instance, in order to receive all
interest messages arriving at the node, a filter developer would add a filter with the following
attribute:

CLASS_KEY EQ INTEREST_CLASS

2.3 Using Attributes

In order to ease attribute creation and manipulation, the API provides factories to create attributes.
The attribute factories also include other functions that allow finding an attribute in a set of
attributes. An example of how to define and create an attribute is shown below:

#define TEMPERATURE_KEY 5050 // Defines key value for the attribute

// Creates a factory for the TEMPERATURE_KEY attribute
NRSimpleAttributeFactory<float> TemperatureAttr (TEMPERATURE_KEY,
NRAttribute: :FLOAT32_TYPE) ;

// Creates a temperature attribute with the op IS and value 56.12
NRAttribute *temperature = TemperatureAttr.make(NRAttribute::IS, 56.12));

These factories are available for all supported types and can be used to create INT32_TYPE
(<int>), FLOAT32_TYPE (<float>), FLOAT64_TYPE (<double>), STRING_TYPE (<char *>)
and BLOB_TYPE (<void *>) attributes.

Also, the method getVal() returns the value of the attribute. The value from the attribute
created above can be accessed by:

float room_temperature = temperature->getVal();

Since several API functions require a set of attributes (to describe a subscription, publication,
filter, data, etc), the API defines the N RAttrVec structure, which is a STL vector of pointers to
attributes. As a consequence, this version of the Network Routing API does not require applications
to explicitly pass the number of attributes in each API function interface. This information can
easily be obtained using the STL vector’s size() method.

This is an example that creates a set of attributes:

NRSimpleAttributeFactory<float> TemperatureAttr (TEMPERATURE_KEY,
NRAttribute: :FLOAT32_TYPE);
NRSimpleAttributeFactory<float> HumidityAttr (HUMIDITY_KEY,
NRAttribute: :FLOAT32_TYPE) ;
NRSimpleAttributeFactory<char *> MovieNameAttr (MOVIE_NAME_KEY,
NRAttribute: :STRING_TYPE) ;
NRSimpleAttributeFactory<void *> LibraryCardAttr (LIBRARY_CARD_KEY,
NRAttribute: :BLOB_TYPE) ;

main()

{
NRAttrVec attrs;

//
// Demonstrate making some attributes.
// All duplicative information is in the factory.

//

// Push back is an STL vector operation
attrs.push_back(TemperatureAttr.make (NRAttribute::IS, 56.12));
attrs.push_back(HumidityAttr.make (NRAttribute::IS, 0.78));
attrs.push_back(MovieNameAttr.make (NRAttribute::IS, "Harry Potter"));
char *card_id = "B34201S102";
attrs.push_back(LibraryCardAttr.make (NRAttribute::IS,
(void *) card_id,
strlen(card_id) + 1));

Attribute factories also provide the following find interfaces, which can be used to find an
attribute that has the same key as the factory in a set of attributes. The first form of the function
searches the set of attributes and returns the first one that matches the key. The second, more
general, form allows applications to specify where to start the search.

NRSimpleAttribute<T>* find(NRAttrVec *attrs,
NRAttrVec::iterator *place = NULL);
NRSimpleAttribute<T>* find_from(NRAttrVec *attrs,
NRAttrVec::iterator start,
NRAttrVec::iterator *place = NULL);

The following examples illustrate how these two functions can be used to find an attribute in a
set of attributes:

// Find a temperature attribute in a set of attributes
NRSimpleAttribute<float> *temp_attr = TemperatureAttr.find(&attrs);

if (!temp_attr){
// Attribute not present in the set

}

// Demonstrate extracting multiple attributes with the same key
NRAttrVec::iterator place = attrs.begin();

for (53504
NRSimpleAttribute<char *> *movie = MovieNameAtt.find_from(&attrs, place,
&place);
if (!movie)
break;
// Process attribute
cout << "Movie = " << movie->getVal() << endl;
place++;
}

2.4 Additional Attribute Functions

In this section, we list additional functions that can be used to manipulate, compare and delete
attributes.

2.4.1 Matching Functions

Our API includes several functions that perform matching. Even though these functions are not

typically needed by applications, we document them here. They are members of the NRAttribute
class and their prototypes are as follows:

bool isEQ(NRAttribute *attr);
bool isGT(NRAttribute *attr);
bool isGE(NRAttribute *attr);
bool isNE(NRAttribute *attr);
bool isLT(NRAttribute *attr);
bool isLE(NRAttribute *attr);

All the above functions assume that both attributes have the same key and type. An example
of the use of these functions is shown below:

NRAttribute *latl = LatitudeAttr.make(NRAttribute::IS, 45.1);
NRAttribute *lat2 = LatitudeAttr.make(NRAttribute::IS, 38.3);

bool flag = latl->isGT(lat2);
// flag is true !

2.4.2 Attribute Manipulation Functions

This version of the API includes the following additional functions that can be used to manipulate
sets of attributes:

NRAttrVec * CopyAttrs(NRAttrVec *src_attrs);

e This function returns a pointer to a newly created attribute vector, containing a copy of all
attributes from src_attrs.

void AddAttrs(NRAttrVec *attr_vecl, NRAttrVec *attr_vec2);

e This function adds a copy of all attributes from attr_vec2 to the existing attribute vector
attr_vecl.

e After execution, attr_vecl will contain its original attributes and a copy of all attributes
present in attr_vec2 (which will remain unchanged).

void PrintAttrs(NRAttrVec *attr_vec);

e This function prints all attributes present in attr_vec using the function DiffPrint.

void ClearAttrs(NRAttrVec *attr_vec);

e This function will delete all attributes from attr_vec. After the execution of ClearAttrs,
attr_vec will be an empty vector (which still has to be deleted).

App

Filter Filter
o s F1 F2
4] |5 6 |7
1. Filter Core | 8.

Figure 1: Message Flow in the Filter API
2.5 Filter API

Filters are application-provided software modules that allow applications to influence routing and
data processing. Some uses of filters include routing, in-network aggregation, collaborative signal
processing, caching, debugging, and monitoring. The filter architecture was designed to support a
very high-level of user configurability. With the Filter API, filters can specify a set of attributes
describing what messages they are interested along with a callback. This causes the filter core to
send incoming messages matching those attributes to the filter callback. As mentioned in section 2.2,
filters are a special case for the matching rules. When matching filters against incoming messages,
the match is done one-way only. Only operators in the filter have to be satisfied for a match to
happen. Note that if a filter is too generic, it will possibly receive messages from other applications
too. For instance, if the only attribute specified is CLASS_KEY EQ INTEREST _CLASS, all interest
messages from all applications will be forwarded to this callback.

When setting up a filter, the developer has also to specify its priority. This is used to define the
order filters will be called when multiple filters match the same incoming message. Higher numbers
are called first. Diffusion will not allow two filters to have the same priority, so this number should
be discussed with other developers to avoid problems.

As a start point for developers, we suggest that filters doing message pre-processing (e.g. log-
ging) have their priorities set above PRE_PROCESSING_COMPLETED PRIORITY (currently
configured as 200). Filters doing post-processing should have their priority below ROUTING_COM-
PLETED_PRIORITY (currently set to 50). Priorities between these two values should be used for
filters implementing routing algorithms.

When the filter core matches an incoming message to a filter, it will send it to the callback
provided in the form of a Message structure (described later in section 6.1). The message structure
allows filter callbacks to access information that would otherwise be hidden from applications. This
information include message last hop, which contains either a neighbor id (or a random id that is
picked upon start up if node ids are not specified) or the constant LOCALHOST _ADDR, indicating
that the message originated from a local application.

The filter callback has total control of this message, which can be forwarded, changed and then
forwarded or discarded. Please refer to section 6.3 for a more detailed description.

2.5.1 Message Flow with the Filter API

This section describes the message flow in the filter core when using the Filter API. The numbers
in the text correspond to the numbers in figure 1, which illustrates the message flow.

Messages arriving at the filter core module usually come from either the network (1) or from
local applications (3), which use the publish/subscribe/send interface to send interest and data

messages to the network.

Each incoming message is matched against all registered filters (see section 6.1 for a detailed
description on how to add a filter). The result is a list ordered by filter priority containing all filters
whose attributes resulted in a successful match.

Assuming that both filters F1 and F2 on figure 1 match the incoming message and P(F1) >
P(F2), where P(X) is the priority of filter X, the filter core will forward the incoming message to
filter F1 (4) since it has the highest priority.

After processing the message, filter F1 can return the message to the filter core (5) by calling
NR::sendMessage (see section 6.3). Note that the filter can return the same message it received
from the filter core, a modified message, a complete new message, multiple messages (by calling
NR::sendMessage more than one time) or even no messages (by returning from the callback without
calling NR::sendMessage). The filter core will match returned messages against all registered filters
again and create a new list of filters (note that because filter F1 can change the message or send
new messages, the list of filters matching returned messages can be different than the original list).
What happens next depends if NR::sendMessage is called with or without a new priority. Assuming
that the priority remains the same (the default behavior when the filter does not specify any priority
in NR::sendMessage), if filter F1 is still present on this list, the message is sent to the filter coming
immediately after F1 in the list (in our case, filter F2 will receive the message (6)). If the filter F1
is not present on this new list, the first filter on the list will receive the message. If there are no
other filters after F1, the filter core will look at the message and see if it contains a a valid next
hop address (or a valid application address). In that case, the filter core will forward the message
to the appropriate node or application. Otherwise, the message will be simply discarded. If a new
priority is specified in NR::sendMessage, the filter core will start looking for filters whose priorities
are below the specified priority. This allows knowledgeable filters to send messages to other filters
directly, bypassing the default ordering imposed by the filter core.

Filters can also send messages directly to the network (e.g. (5), then (8)) or to a local application
(e.g. (), then (2)) by calling NR::sendMessage with FILTER_MIN_PRIORITY (usually set to 1),
see section 6.3 for more information). In this case, other filters will not receive the message.

3 Performance Evaluation

As of the 9.0 version of the API, diffusion supports several variants that can offer better efficiency
for particular workloads. Developers therefore should know what performance/overhead to expect
when using diffusion in order to better decide how to implement their algorithms using this Network
Routing API. For a detailed description of how basic diffusion works, see [4]. Refer to [1] for a
more detailed comparison of diffusion variants.

We now present a brief description of what happens when applications using one-phase pull,
two-phase pull and/or one-phase push call publish and subscribe. We later describe how the use of
geographic information can greatly reduce the cost of communication and how reliable transfers of
large objects can be achieved using RMST, our Reliable Multi-Segment Transport algorithm. For
detailed API information, please refer to section 4.

3.1 Two-phase-pull Diffusion

Each subscription (i.e. call to subscribe) causes the diffusion library to periodically send an interest
message (containing the subscription’s attributes) to the network. These interest messages are

flooded throughout the network. When they encounter publishers with matching data, simple
(non-reinforced) gradients are set up from the publisher to the subscriber. Calls to publish, on the
other hand, do not cause any messages to leave the diffusion library API. The attributes specified
in the publish call are just stored so later they can be used. When an application calls send, the
attributes provided are added to the attributes from a previous publish (using the handle provided).
These attributes form a data message. Data messages are sent only through reinforced gradients.
Periodically, in order to discover new paths or repair broken paths, diffusion marks a data message
as exploratory and sends it to all nodes it has gradients (both reinforced and non-reinforced). When
one of these messages reach a subscriber, it will cause a positive reinforcement to be sent to the
publisher. That is what makes regular gradients become reinforced gradients.

In a brief summary, subscriptions cause periodic interest messages to flood the network and
therefore are expensive. Publications (and then sends) incur no cost unless someone is interested
in the data. Usually sends are cheap, sending data only on reinforced gradients, but periodically
they are expensive (when marked exploratory).

Two-phase pull diffusion is therefore best suited to cases where there are many publishers and
a few subscribers. If this situation is reversed, the one-phase push algorithm in diffusion, described
in section 3.3, can provide better performance.

Also, basic diffusion must periodically flood information to all nodes. This cost can be reduced
using geographic information and GEAR as described in Section 3.4.

3.2 One-phase pull Diffusion

One-phase pull is a subscriber-based system that avoids one of the two phases of flooding present
in two-phase pull. As with two-phase pull, subscribers send interest messages that disseminate
through the network, establishing gradients. Unlike two-phase pull, when an interest arrives at
a source it does not mark its first data message as exploratory, but instead sends data only on
the preferred gradient. The preferred gradient is determined by the neighbor who was the first to
send the matching interest, thus suggesting the lowest latency path. Thus one-phase pull does not
require reinforcement messages, the lowest latency path is implicitly reinforced.

One-phase pull has two disadvantages compared to two-phase pull. First, it assumes symmetric
communication between nodes since the data path (source-to-sink) is determined by lowest latency
in the interest path (sink-to-source). Two-phase pull reduces the penalty of asymmetric commu-
nication since choice of data path is determined by lowest-latency exploratory messages, both in
the source-to-sink direction. However, two-phase pull still requires some level of symmetry since
reinforcement messages travel reverse links. Although link asymmetry is a serious problem in wire-
less networks, many other protocols require link symmetry, including 802.11 and protocols that
use link-level acknowledgments. We assume that the MAC layer will allow diffusion to identify
asymmetric links.

Second, one-phase pull requires interest messages to carry a flow-id. Although flow-id generation
is relatively easy (uniqueness can be provided by MAC-level addresses or probabilistically with
random assignment and periodic reassignment), this requirement makes interest size grow with
number of sinks. By comparison, though, with two-phase pull the number of interest messages
grows with proportion to the number of sinks, so the cost here is lower. Second, the use of
end-to-end flow-ids means that one-phase pull does not use only local information to make data
dissemination decisions.

In [1], we show that one-phase pull is a much better algorithm for cases where a small number

of sinks pull data from a large number of sources. Also, as with two-phase pull, the cost of interest
flooding in one-phase pull can be greatly reduced with GEAR if geographic information is available.

3.3 One-phase push Diffusion

One-phase push is an option to diffusion that reverses the relative costs of publish and subscribe.
When applications use one-phase push, interest messages generated by subscriptions are not sent
out to the network. They are kept local to the subscriber node. From time to time, data messages
are turned into ezxploratory data messages, and are flooded throughout the network. When one
of these messages reaches a subscriber node, a positive reinforcement message will be sent to the
publisher in response, setting up reinforced gradients on its way. Non-exploratory data messages
will travel only through these reinforced gradients. If there are no subscribers for this datatype,
there will not be any reinforced gradients therefore non-exploratory messages will be suppressed at
the publisher node.

In summary, subscriptions with one-phase push are cheap since messages do not leave the
subscriber node. Publishers, on the other hand, have no way of telling if there are subscribers
interested in their data therefore periodic exploratory data messages are flooded throughout the
network.

One-phase push offers more benefits when there are many subscribers and/or when there are
few data messages to be sent from publishers to subscribers.

3.4 Using GEAR

GEAR, our Geographical and Energy Aware Routing protocol, uses geographic information for
making informed neighbor selection when routing packets towards a target region. In order to take
advantage of GEAR, messages should contain a reference to either a closed region (i.e. have two
latitude attributes and two longitude attributes, which specify a closed retangular region), or a
point (one latitude and one longitude attribute, both with the EQ operator).

For the one-phase and two-phase pull algorithms, subscriptions (interests) should include the
geographic attributes, containing the region of interest. Until a subscription gets inside the specified
region, a node will forward interest messages only to a neighbor that is located closer to the region,
setting up a single path from the subscriber to the region’s border. This greatly improves diffusion’s
performance by avoid flooding interest messages outside the subscription’s region. Nodes publishing
data should include their location on the publications (latitude and longitude attributes with the
IS operator), causing matching to occur. In one-phase pull, data messages will follow the interest
path back to the subscriber. For two-phase pull, since exploratory data messages travel only through
gradients, they are not going to be flooded outside the subscription’s region.

When using GEAR with the one-phase push algorithm 3.3, geographic attributes containing a
target region or point should be added to the publication, while subscribers should only include
their node’s location on their local subscription (in push, all subscriptions are local). In this case,
exploratory data messages will travel through a single path until they reach the specified region,
resulting in improved performance as there is no flooding.

3.5 Using RMST

RMST, Reliable Multi-Segment Transport [5], is a NACK-based reliability layer for diffusion that
provides guaranteed delivery and fragmentation/reassembly for large data objects. RMST leverages

10

the reinforced routes established by diffusion to establish a ”back-channel” from sink to sources
on which repair requests and other control messages can be delivered. In order to use RMST, the
rmst_filter must be loaded at each node in the sensor network. RMST, in its default mode, assumes
that the MAC layer provides ARQ (e.g. S-MAC [6]). If a non-ARQ MAC layer is used, RMST
should be put into ”caching-mode” so that hop by hop repair is executed at the transport layer.
Caching-mode is only feasible at nodes that have sufficient memory to cache all the fragments of the
largest possible data object from the application. Sinks and sources automatically run in caching
mode. RMST is fully integrated in the publish/subscribe API, and users can send a large object
using RMST via the NR::sendRmst method added to the API (see section 4.8).

4 Publish/Subscribe API Interfaces

Following is a description of each of the methods that are part of the Publish/Subscribe network
routing API class.

4.1 Initialization

To initialize the NR class, there is a C++ factory called NR::createNR() that will create the NR
class and return a pointer to it.

The prototype of the function is as follows:

static NR * NR::createNR();

createNR() is a method rather than a constructor so that it can actually create a specific
subclass of class NR (one for MIT and one for ISI-W). It will create any threads needed to insure
callbacks happen.

4.2 Subscribe

The application declares interest in data via the NR::subscribe interface. This function accepts a
list of interest attributes and uses this information to route data to the necessary nodes.

The prototype of the function is as follows:

handle NR::subscribe(NRAttrVec *subscribe_attrs, const NR::Callback * cb);

e subscribe_attrs is a pointer to a STL vector containing the elements that describe the sub-
scription information (see notes above about the class type).

e cb indicates the class that contains the implementation of the method to be called when
incoming data (or tasking information) matches that subscription. The class inherits from
the following abstract base class:

class Callback {
public:

virtual void recv(NRAttrVec *data, handle h) = 0;
};

11

After subscriptions are diffused throughout the network, data arrives at the subscribing node.
The recv() method (implemented by the application) is called when incoming matching data
arrives at the network routing level. This method is used to pass the incoming data and
tasking information up to the caller. See section 4.7 for more detail about callbacks.

Subscribe returns a handle (which is an identifier of the interest declaration/subscription). This
handle can be used for a later NR::unsubscribe call. If there is an error in the subscription call
(based on local information, not the propagation of the interest), then a value of —1 will be returned
as the handle.

Note that the condition that no data matches the attributes is not considered an error condition—
if the application requires or expects data to be published, application-level procedures must de-
termine conditions that might cause no data to appear. (As one example, if the goal is to contact
a few nearby sensors, the application might start with a small region around it and expand or
contract that region until the expected number of sensors reply.)

Subscribes are used to get both data and to find out about subscriptions from other nodes. To
get data, (if you're a data sink) subscribe with:

CLASS_KEY IS INTEREST_CLASS
SCOPE_KEY IS GLOBAL_SCOPE

If no SCOPE_KEY attribute is specified, the API will assume GLOBAL_SCOPE and this sub-
scription will propagate throughout the network (two-phase pull semantics) and the callback will
eventually trigger when matching data returns. If the SCOPE_KEY attribute is set to NODE _LOCAL-
_SCOPE, this subscription will follow the one-phase push semantics (please refer to section 3.3 for
more information). In order to use one-phase pull semantics, subscriptions will have to include
the NRAlgorithm attribute (set to NR::ONE_PHASE _PULL_ALGORITHM) 2. A one-phase pull
subscription will then look like:

CLASS_KEY IS INTEREST_CLASS
SCOPE_KEY IS GLOBAL_SCOPE
ALGORITHM_KEY IS ONE_PHASE_PULL_ALGORITHM

To find out about interests (if you're a sensor or data source and would like to know if there
are subscribers in the network interested in a particular data type), subscribe with:

CLASS_KEY EQ INTEREST_CLASS
SCOPE_KEY IS NODE_LOCAL_SCOPE

The callback you provide will be called for each new subscription (with CLASS_KEY IS INTER-
EST_CLASS). In order to also find out whenever a subscription goes away due to NR::unsubscribe
or detection of node failure (timeout), subscribe including CLASS_KEY NE DATA _CLASS. This
will result in callbacks with CLASS KEY IS DISINTEREST CLASS. These callbacks will be made
at least once for each unique expression of interest. If multiple clients express interest with the
exact same set of attributes (identical subscriptions), this callback will occur at least once.

Note that some combinations of CLASS KEY and SCOPE_KEY are not supported by this API.
In these cases, NR::subscribe will return —1.

In our next major release we plan to use the NRAlgorithm attribute for also selecting the two-phase pull and
one-phase push algorithms.

12

4.3 Unsubscribe

The application indicates that it is no longer interested in a subscription via the NR::unsubscribe
interface. This function accepts a subscription handle (originally returned by NR::subscribe) and
removes the subscription associated with that passed handle.

The prototype of the function is as follows:

int NR::unsubscribe(handle subscription_handle);

e subscription_handle is a handle associated with the subscription that the application wishes
to unsubscribe to. It was returned from the NR::subscribe interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of —1 is returned. Otherwise, 0 is returned for normal operation.

4.4 Publish

The application also indicates what type of data it has to offer. This is done via the NR::publish
function.
The prototype of the function is as follows:

handle NR::publish(NRAttrVec *publish_attrs);
e publish_attrs is an STL vector of publication declarations.

This function returns a handle (which is an identifier of the publication) that will be later used
for NR::send and NR::unpublish (when sending and unpublishing data). If there is an error in the
publication call, then a value of —1 will be returned as the handle.

Note that if the application does not specify a SCOPE_KEY attribute, NR::publish will assume
it to be NODE_LOCAL_SCOPE (two-phase pull semantics). If, however, the application wants to
use the one-phase push semantics (please refer to section 3.3), both CLASS KEY and SCOPE KEY
attributes need to be specified. The following example illustrates a publication using the one-phase
push algorithm:

CLASS_KEY IS DATA_CLASS
SCOPE_KEY IS GLOBAL_SCOPE

In order to use the one-phase pull algorithm, publications will also have to include the NRAI-
gorithm attribute, setting the algorithm to NR::ONE_PHASE PULL_ALGORITHM.

4.5 Unpublish

The publish interface has a matching unpublish interface, NR::unpublish.
The prototype of the function is as follows:

int NR::unpublish(handle publication_handle);

e publication_handle is the handle associated with the publication that the application wishes
to unpublish. It was returned from the NR::publish interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of —1 is returned. Otherwise, 0 is return for normal operation.

13

4.6 Send

After publications are set up, the application can send data via the NR::send function. This function
will accept a set of attributes to send associated with a publication handle (the handle used in the
associated NR::publish function call). This method does not guarantee delivery, but the system
will make reasonable efforts to get it to its destination.

The prototype of the function is as follows:

int NR::send(handle publication_handle, NRAttrVec *send_attrs);

e publication_handle is the handle that is associated with the block of data that was sent.

e send_attrs is a pointer to a STL vector containing the attributes to be associated with the
send. (In addition to those attributes defined in the original publication.)

The return value indicates success/failure. If there is a problem with the arguments, then an
error code of —1 is returned. Otherwise, 0 is returned for normal operation. If there is currently
no one interested in the message (no matching subscription), then it will not consume network
resources.

4.7 Recv

After the subscribe is issued from the application thread, the application thread can wait for the
reception of information via the NR::Callback::recv() method.

The network routing system will provide a thread to make callbacks happen. Since there is
only one such thread in the system, the callback function should return reasonably quickly. If the
callback needs to do some compute-bound or IO-bound task, it should signal another thread.

The attributes received in this function should be treated as read-only. The API will delete
them as soon as the callback returns. The application must copy the appropriate attribute(s) if
they are needed after the recv function returns.

4.8 SendRmst

When a user wishes to send data with guaranteed delivery or fragmentation/reassembly for large
data objects, they do so via the NR::sendRmst function. It is similar to the NR::send function with
the addition of guaranteed delivery. The function’s prototype is as follows:

int NR::sendRmst(handle publication_handle, NRAttrVec *send_attrs, int fragment_size);

e publication_handle is the handle that is associated with the block of data being sent. The
associated publication must contain an RmstTargetAttr attribute.

e send_attrs is a pointer to a STL vector containing attributes to be sent. The send_attrs must
include an RmstDataAttr containing the blob to be delivered.

e fragment_size is the fragment size that the data blob pointed to by the RmstDataAttr will
be fragmented into. The fragment size 4+ packet overhead + the cumulative size of the other
attributes must be less than or equal to the sensor network mtu.

14

Similarly to NR::send, this function will return —1 if there is a problem with the arguments or
0 if the call was successful (meaning the blob was sent to the rmst filter in the node; delivery will
occur asynchronously). An example of how to use RMST is provided in sample source and sink
files included in the diffusion distribution.

5 Timer API

In our Network Routing API, we have included support for timers in order to support event-driven
applications. As described below, applications and filters can setup timers to call an application
provided callback. Timers can also be removed from the API’s event queue.

In diffusion 3.1.3, our Timer API has changed. This section describes this updated version.
The old API, described in earlier versions of this document, is still supported but as we plan to
drop it in our next major release, developers are urged to use the API described here.

5.1 Add Timer

Applications can set up a timer via the NR::addTimer interface. The function calls the provided
callback after the specified time has elapsed.

The prototype of the function is as follows:

handle NR::addTimer (int timeout, TimerCallback *callback);

e timeout specifies the time to wait before calling the expire() callback (in msecs)

e callback indicates the class that contains the implementation of the methods to be called when
the timer expires or when the timer is being deleted. The class inherits from the following
abstract base class:

class TimerCallback {

public:
TimerCallback() {};
virtual “TimerCallback() {};
virtual int expire() = 0;

};

Note that there is no need for any callback-specific parameters in NR::add Timer as application
and filter developers can add instance variables and task-specific functions to the derived class.
For instance, a timer used to send a message after a specific timeout, will probably include
the actual message to be sent.

The expire() method, implemented by the application, is called when the timer expires. The
return value indicates if the timer should be rescheduled and the new timeout. A return value
of 0 indicates the application wants to reschedule the timer with the same timeout (provided
previously in NR::addTimer). A positive return value causes the timer to be rescheduled with
a new timeout (in msecs). A negative return value indicates the timer is to be deleted from
the event queue. Note that it is the user’s responsibility to delete the timer callback. For
example:

15

int SendDetectionTimer: :expire()

{
// Send detection
dr_->send(handle_, detection_attrs_);

// Delete this timer
delete this;

return -1;

5.2 Remove Timer

The application indicates that it wants to cancel a pending timer via the NR::removeTimer interface.
This function accepts a timer handle (originally returned by NR::addTimer) and removes associated
timer from the event queue.

The prototype of the function is as follows:

int NR::removeTimer (handle timer_handle);

e timer_handle is a handle associated with the timer that the application wishes to cancel. It
was returned from the NR::addTimer interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of —1 is returned. Otherwise, 0 is return for normal operation.

6 Filter API

The following sections describe the interfaces for the Filter API. It should be used to run application
code in the network for application specific processing.

6.1 Add Filter

Application can set up filters via the NR::addFilter interface. This function accepts a set of at-
tributes that are matched against incoming messages, as described in section 2.2.

The prototype of the function is as follows:

handle addFilter (NRAttrVec *filter_attrs, u_intl6_t priority,
FilterCallback *cb);

e filter_attrs is a pointer to a STL vector containing the attributes of this filter. Note that for
filters, matching is performed one-way (messages have to match the operators specified in the
filter).

e priority is the filter priority (larger numbers are called before smaller ones). This number
has to be agreed with other application developers. Valid filter priorities are in the 2 to 253
range. Please refer to section 2.5 for directions on how to assign priorities.

16

e cb indicates the class that contains the implementation of the method to be called when an
incoming message matches the filter. The class inherits from the following abstract base class:

class FilterCallback {
public:
virtual void recv(Message #*msg, handle h) = 0;

};

The handle h is the same handle returned by NR::addFilter and the message msg points to
a message class containing the message that was matched against the filter’s attributes. The
message class is defined as follows:

class Message {
public:
// Read directly from the packet header
// (other internal fields omitted here)
int32_t next_hop_; // Message next hop. Can be BROADCAST_ADDR if
// a neighbor node sent it to broadcast,
// LOCALHOST_ADDR if it came from a local application
// or it can be this node’s ID if the message was sent
// by a neighbor to this node only.
int32_t last_hop_; // Can be either a neighbor’s ID or LOCALHOST_ADDR, if
// the message comes from a local application.

// Other flags
bool new_message_;

// Message attributes
NRAttrVec *msg_attr_vec_;
};

NR::AddFilter returns a handle (which is an identifier of the filter). This handle can be used
for a later NR::removeFilter call. If there is an error in the NR::addFilter call, then the error code
—1 will be returned.

6.2 Remove Filter

The application indicates that it is no longer interested in a filter via the NR::removeFilter interface.
This function accepts a filter handle (originally returned by NR::addFilter) and removes the filter
associated with that passed handle.

The prototype of the function is as follows:

int NR::removeFilter(handle filter_handle);

e filter_handle is a handle associated with the filter that the application wishes to remove. It
was returned from the NR::addFilter interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of —1 is returned. Otherwise, 0 is return for normal operation.

17

6.3 Send Message

A filter callback can use the NR::sendMessage interface to send a message to the next filter, to an
arbitrary filter, or to the the network/other applications. An example of how to use this function
is presented later, in section 8.2, where the ’log’ filter, using a high priority, receives all messages
before any other filter and then passes it to other filters, after logging some information on the
terminal (since messages are not changed, this is totally transparent to other filters downstream).

void NR::sendMessage(Message *msg, handle h,
u_int16_t priority = FILTER_KEEP_PRIORITY);

e msg is a pointer to the message the application wants to send.
e h is the handle received from addFilter.

e priority can be used to tell diffusion to start looking for matching filters which have priorities
lower than the one specified here. If this parameter is ommited, diffusion will follow its regular
rules for determining which filter should get this message next. For further details, please
refer to section 2.5.

If diffusion cannot find any filters matching a message sent by NR::sendMessage, it will try to
send the message to the network (node specified in msg->next_hop_ if msg->next_port_ is set to 0)
or to a local application (if msg->next_port_ is different than 0 and msg->next_hop_ is LOCAL-
HOST_ADDR).

6.4 Blacklisting

In this version of the API document, we introduce two functions to the Filter API, NR::addToBlacklist
and NR::clearBlacklist. Please note that blacklisting is still experimental and these APIs may change
in the future.

6.4.1 Add to Blacklist

Filters can use the NR::addToBlacklist function to blacklist neighbors. Messages from blacklisted
neighbors will be ignored by the filter core and will not be matched against any filters. This
interface can be used by routing algorithms that need to ignore messages from unreliable neighbors
(RMST uses it to remove links whose reliability falls under a certain number). The prototype for
this function is as follows:

int NR::addToBlacklist(int32_t node);
e node is a neighbor that will be blacklisted.

The return value indicates success/failure. If there is a problem with the call, an error code of
—1 is returned. Otherwise, 0 is return for normal operation.

18

6.4.2 Clear Blacklist

Filters can empty the blacklist by calling the NR::clearBlacklist function. This call will cause the
filter core to clear its blacklist, allowing communication from all neighbors to reach the filter stack.
This function can be used by filters, who previously added nodes with non-optimal links to the
blacklist, and now want to try these links again (e.g. nodes may have moved or a better link may
not be available anymore). The NR::clearBlacklist function does not take any parameters and its
prototype is as follows:

int NR::clearBlacklist();

The return value indicates success/failure. If there is a problem with the call, an error code of
—1 is returned. Otherwise, 0 is return for normal operation.

7 Publish/Subscribe API Walk Through

This walkthrough considers, at a high-level, what happens in the network when an user node is
interested in a specific target.

7.1 Using one-phase and two-phase pull

As both one-phase and two-phase pull algorithms are very simular from the API point of view, both
are described together in this section and any differences are pointed out in the text. An user node
(sink), node A, wants information about TELs and expresses this interest by calling NR::subscribe
with the following attributes:

Subscription 1: (two-phase pull)

CLASS_KEY IS INTEREST_CLASS
SCOPE_KEY IS GLOBAL_SCOPE
LONGITUDE_KEY GE 10
LONGITUDE_KEY LE 50
LATITUDE_KEY GE 20
LATITUDE_KEY LE 40
TASK_FREQUENCY_KEY IS 500
SENSOR_TYPE_KEY EQ seismic
TARGET_KEY IS TEL
TARGET_RANGE_KEY LE 50
TASK_NAME_KEY IS detect_track
TASK_QUERY_DETAIL_KEY IS [query_byte_code]

Note the distinction between IS which specifies a known value and EQ, which specifies a required
match (condition). In this example, the conditions are seismic sensors detecting targets closer than
50 in the region with longitude between 10 and 50 and latitude between 20 and 40. All of the
comparisons are currently ANDed together. The query parameters that interact with network
routing (for example, latitude and longitude) must be expressed as attributes, but some other
parameters may appear only in application-specific fields (such as the query_byte_code in this
example).

19

NR::subscribe returns right away with a handle for the interest. Because this interest has a
global scope, network routing forwards it to the neighboring nodes, that proceed using the pre-
defined rules.

If the application prefers to use the one-phase pull algorithm (instead of two-phase pull),
subscription 1 should include the ALGORITHM_KEY IS ONE_PHASE PULL_ALGORITHM at-
tribute.

Nodes with sensor(s) tell network routing about the type of data they have available by publish-
ing. An application on a source node, node B, would call NR::publish with the following attributes:

Publication 1: (two-phase pull)

CLASS_KEY IS DATA_CLASS
SCOPE_KEY IS NODE_LOCAL_SCOPE
LONGITUDE_KEY IS 10
LATITUDE_KEY IS 20
TASK_NAME_KEY EQ detectTrack
TARGET_RANGE_KEY IS 40
SENSOR_TYPE_KEY IS seismic

After receiving the handle, the application can start sending data with the NR::send function.
For example, for each detection it might invoke NR::send with the confidence attribute (CONFI-
DENCE_KEY), including confidence information for each individual detection (0.8, 0.9, etc). This
attribute (CONFIDENCE_KEY) would be merged with the corresponding attributes associated
with the publish handle (e.g. from publication 1) and eventually delivered to anyone with a match-
ing subscribe. Initially, since the node has no matching interest, the data will not propagate to other
nodes. When interests arrive, data will begin to propagate. Again, as in the subscription, in order
to use the one-phase pull algorithm, the publication should include the an ALGORITHM_KEY
attribute (ALGORITHM_KEY IS ONE_PHASE PULL_ALGORITHM). Note in publication 1 the
TASK_NAME _KEY attribute with an EQ operator (the same attribute appear with an IS oper-
ator in subscription 1). If it was done the other way around (EQ in the subscription and IS in
the publication), the publication could match other types of interests with less restrictive condi-
tions, possibly from a different application running concurrently in the sensor network. This is
particularly important in subscription 2 below.

In some cases, the application may wait to start sensing until it has been tasked, either to avoid
doing unnecessary work, or to use the parameters in the interest to influence what it looks for. In
this case, the sensor node would get the task by subscribing to interests with NR::subscribe and
the following attributes:

Subscription 2: (two-phase pull)

CLASS_KEY NE DATA_CLASS
SCOPE_KEY IS NODE_LOCAL_SCOPE
LONGITUDE_KEY IS 10
LATITUDE_KEY IS 20
TASK_NAME_KEY EQ detectTrack
TARGET_RANGE_KEY IS 40
device_type IS seismic

(The only difference in these attributes with the publish call is in the CLASS key and opera-
tor.) The callback associated with this subscribe will then be called each time a new subscription

20

arrives or goes away. Arrivals will have CLASS KEY IS INTEREST _CLASS, unsubscribes will
have CLASS_KEY IS DISINTEREST_CLASS.)

7.2 Using one-phase push and GEAR

There are a few things to consider when using one-phase push or GEAR. As subscription 1 already
specifies a valid closed region, GEAR can be used to route this subscription towards nodes in
the mentioned region. A valid closed region includes two latitude and two longitude attributes,
specifying a closed retangle with the LT, LE, GT, and GE operators. If users wanted to specify
a geographic point of interest, subscription 1 would be changed to subscription 1A below, which
includes latitude and longitude attributes with EQ operators.

Subscription 1A: (two-phase pull with a geographic point of interest)
CLASS_KEY IS INTEREST_CLASS

SCOPE_KEY IS GLOBAL_SCOPE

LONGITUDE_KEY EQ 10

LATITUDE_KEY EQ 20

TASK_FREQUENCY_KEY IS 500

SENSOR_TYPE_KEY EQ seismic

TARGET_KEY IS TEL

TARGET_RANGE_KEY LE 50

TASK_NAME_KEY IS detect_track
TASK_QUERY_DETAIL_KEY IS [query_byte_code]

If no sensor nodes with a matching publication are located in geographic coordinates specified
in subscription 14, no matching will occur. Note that because GEAR is a separate program, it will
need to be started along with the filter core and two_phase_pull.

If the application developer wanted to use one-phase push semantics, subscription 1 and publi-
cation 1 would have to be changed to subcripttion 1B and publication 1B below (the only difference
is in the SCOPE_KEY attributes).

Subscription 1B: (one-phase push semantics)

CLASS_KEY IS INTEREST_CLASS
SCOPE_KEY IS NODE_LOCAL_SCOPE
LONGITUDE_KEY GE 10
LONGITUDE_KEY LE 50
LATITUDE_KEY GE 20
LATITUDE_KEY LE 40
TASK_FREQUENCY_KEY IS 500
SENSOR_TYPE_KEY EQ seismic
TARGET_KEY IS TEL
TARGET_RANGE_KEY LE 50
TASK_NAME_KEY IS detect_track
TASK_QUERY_DETAIL_KEY IS [query_byte_code]

Publication 1B: (one-phase push semantics)
CLASS_KEY IS DATA_CLASS

SCOPE_KEY IS GLOBAL_SCOPE
LONGITUDE_KEY IS 10

21

LATITUDE_KEY IS 20
TASK_NAME_KEY EQ detectTrack
TARGET_RANGE_KEY IS 40
SENSOR_TYPE_KEY IS seismic

Because interest messages remain local to the subscriber node (sink) in one-phase push, there is
no reason for having a subscription 2 (subscription for interests) as these will not reach the sensor
(soruce) node.

For the same reason, including geographic coordinates in the subscription will limit the match-
ing data to reading from those coordinates, but will not allow GEAR to improve the algorithm
performance in this case (as because interest messages never leave the node, there is nothing to
improve). However, when using one-phase push, we can benefit from geographic routing in a dif-
ferent way. GEAR can limit the flooding of exploratory data messages containing either a closed
geographic region or a geographic point just as it does for interest messages. Look at subscription
1C and publication 1C below.

Subscription 1C: (one-phase push semantics with GEAR)

CLASS_KEY IS INTEREST_CLASS

SCOPE_KEY IS NODE_LOCAL_SCOPE
LONGITUDE_KEY IS 45

LATITUDE_KEY IS 19

TASK_FREQUENCY_KEY IS 500

SENSOR_TYPE_KEY EQ seismic

TARGET_KEY IS TEL

TARGET_RANGE_KEY LE 50

TASK_NAME_KEY IS detect_track
TASK_QUERY_DETAIL_KEY IS [query_byte_code]

Publication 1C: (one-phase push semantics with GEAR)

CLASS_KEY IS DATA_CLASS
SCOPE_KEY IS GLOBAL_SCOPE
LONGITUDE_KEY GE 30
LONGITUDE_KEY LE 50
LATITUDE_KEY GE 15
LATITUDE_KEY LE 20
TASK_NAME_KEY EQ detectTrack
TARGET_RANGE_KEY IS 40
SENSOR_TYPE_KEY IS seismic

In this case, the publisher (source) node is pushing its local detections to subscribers (sinks)
located in a particular region. GEAR can improve the performance in this case by limiting the

flooding of the exploratory data messages outside this region. The use of a geographic point (instead
of a closed region) is also supported.

8 API Usage Examples

This section provides examples on how to use the Network Routing Publish/Subscribe and Filter
APIs.

22

8.1 Publish/Subscribe Example

Step 0: Includes and Definitions
#include "diffapp.hh" // Everything from diffusion you will need
// You should implement your application in
// a class derived from DiffApp, something like:
class MyApplication : public DiffApp
{
public:

MyApplication(int argc, char **argv);

// Your stuff goes here
};

Step 1: Initialization of Network Routing

{
// This code is in the initialization routine of the
// network routing client. It should be somewhere in
// your class
// Parse diffusion related command line arguments (this is not
// necessary, but won’t hurt either). It’s defined in the DiffApp
// class
parseCommandLine (argc, argv);
// Create an NR instance. This will create the NR instance
// and return a pointer to that instance. You can use the dr_
// pointer (defined in the DiffApp class) to store it...
// Specifying diffusion_port_ (also defined in the DiffApp class),
// is optional, and is used to pass the port specified in the -p
// command line option
dr_ = NR::createNR(diffusion_port_);
// Setup the publications and subscriptions for this NR client.
// Note the details of the following calls are found in step 3
setupPublicationsOnSensorNode () ;
setupSubscriptionsOnSensorNode () ;
// Do any other initialization stuff here...

}

23

Step 2: Create callbacks for incoming data/subscriptions

// In a header file somewhere in the client setup two callback
// classes. One to handle incoming data and the other to handle
// incoming subscriptions/tasking.

class DataReceive : public NR::Callback {
public:
void recv(NRAttrVec *data,
NR::handle h);
+;

class TaskingReceive : public NR::Callback {
public:
void recv(NRAttrVec *data,
NR::handle h);
s

// In the appropriate C++ file, define the following methods

void DataReceive::recv(NRAttrVec *data,
NR: :handle h)
{
// called every time there is new data.
// handle it.
¥

void TaskingReceive::recv(NRAttrVec *data,
NR::handle h)
{
// Handle incoming tasking.

}
Step 3: Setup publications and subscriptions

void setupPublicationsOnSensorNode ()
{
// Setup a publication with 4 attributes, using two-phase pull

NRAttrVec attrs;

attrs.push_back(NRClassAttr.make (NRAttribute::IS,
NRAttribute: :DATA_CLASS));
attrs.push_back(DeviceAttr.make (NRAttribute::IS,
"seismic");
attrs.push_back(LatitudeAttr.make (NRAttribute::IS, 54.78));
attrs.push_back(LongitudeAttr.make (NRAttribute::IS, 87.32));

// publish these attributes save the pub_handle
// somewhere like in the private data.

pub_handle_ = dr_->publish(&attrs);

// Delete the attributes (they have been copied by publish)
ClearAttrs(&attrs);

24

if (pub_handle_ == -1)
{
// ERROR;
}
}

// create two subscriptions (one for the sensor node and the
// other for the user node.

void setupSubscriptionsOnSensorNode ()

{
// (1) the first subscription indicates that I am interested in
// receiving tasking subscriptions for this node.
//
// Each of the subscriptions will have its own callback
// to separate incoming subscriptions and incoming data.
[/ Fkkkkskokokskokokkokokok ok
// SUBSCRIPTION #1: First setup the subscription for
// tasking interests...
NRAttrVec attrs;
attrs.push_back(NRClassAttr.make (NRAttribute: :EQ,
NRAttribute: : INTEREST_CLASS));
attrs.push_back(NRScopeAttr.make (NRAttribute: :IS,
NRAttribute: :NODE_LOCAL_SCOPE)) ;
attrs.push_back(DeviceAttr.make (NRAttribute: :EQ_ANY, "");
// Create the callback class that will be used to
// handle subscriptions that match this subscription.
TaskingReceive * tr = new TaskingReceive();
// subscribe and save the handle somewhere
// like in the private data.
task_sub_handle_ = dr_->subscribe(&attrs, tr);
// Delete the attributes (they have been copied by publish)
ClearAttrs(&attrs);
if (task_sub_handle_ == -1)
{
// ERROR;
}
}

void setupSubscriptionsOnUserNode ()
{
// (2) the second subscription indicates that I am interested in
// nodes that have seismic sensors in a particular region
// and have
// them run a task call detectTel (with some specific query
// byte code attached). This task instructs the nodes to send

25

// data back.

[/ FEkkkskokokskokokokokokok ok
// SUBSCRIPTION #2: First setup the subscription for
// tasking subscriptions...

NRAttrVec attrs;

attrs.push_back(NRClassAttr.make (NRAttribute: :IS,
NRAttribute: : INTEREST_CLASS));
attrs.push_back(DeviceAttr.make (NRAttribute::IS, "seismic");
attrs.push_back(LatitudeAttr.make (NRAttribute::GE, 44.0));
attrs.push_back(LatitudeAttr.make (NRAttribute::LE, 46.0));
attrs.push_back(LongitudeAttr.make (NRAttribute::GE, 103.0));
attrs.push_back(LongitudeAttr.make (NRAttribute::LE, 104.0));
attrs.push_back(TaskNameAttr.make (NRAttribute::IS, "detectTel"));
attrs.push_back(TaskQueryDetailAttr.make (NRAttribute::IS,
&query_byte_code.contents,
query_byte_code.len));

// Create the callback class that will be used to
// handle subscriptions that match this subscription.
DataReceive * drcv = new DataReceive();

// subscribe and save the handle somewhere
// like in the private data.
data_sub_handle_ = dr_->subscribe(&attrs, drcv);

// Delete the attributes (they have been copied by publish)
ClearAttrs(&attrs);

if (data_sub_handle_ == -1)
{

// ERROR;
}

Step 4: Sending data
{

// When one of the clients have data to send, then it will use
// the NR::send method. Assume that there is acoustic data to
// send (matching the publish call above). The data is found
// in the variable adata with the size of adata_size.
NRAttrVec attrs;

attrs.push_back (AppBlobAttr.make (NRAttribute: : IS,
&adata,
adata_size));

if (dr_->send(pub_handle, &attrs) == -1)
{

// ERROR;
}

26

// Delete the attributes (they have been copied by send)
ClearAttrs(&attrs);

Step 5: Receiving data

(the ReceiveData callback is called every time data arrives)

8.2 Filter API Example

In this section we describe a simple module that uses the Filter API to receive all INTEREST
messages received by the filter core. The filter calls NR::addFilter with a high priority (in order to
get the packets before other filters). After logging an arrival (printing a packet has arrived along
with where it came from), the Log filter returns this (unmodified) message to the filter core so
other filters/applications can receive it.

Please note that the following code is a modified version of the log filter (supplied with the
current diffusion release).

// Step 0: Includes
#include "diffapp.hh" // Includes everything it is needed from diffusion
#define LOG_FILTER_PRIORITY 210 // This is a pre-processing filter

class LogFilter : public DiffApp
{

LogFilter(int argc, char *xargv);

// Your stuff here. It’s recommended that all applications and filters
// derive from the DiffApp class
}

// Step 1: Initialization

LogFilter: :LogFilter(int argc, char *xargv)
{
// Create Diffusion Routing class
parseCommandLine(argc, argv); // Not necessary, but recommended.
// Takes care of setting up debug level,
// diffusion port

dr_ = NR::createNR(diffusion_port_); // Both dr_ and diffusion_port_ are
// part of the DiffApp class

filter_callback_ = new LogFilterReceiver();

// Set up the filter
filter_handle_ = setupFilter();

27

DiffPrint (DEBUG_ALWAYS, "Log Filter received handle %d\n", filter_handle_);
DiffPrint (DEBUG_ALWAYS, "Logging App initialized !\n");
}

// In the header file, the Filter API client setup a callback class.

class LogFilterReceive : public FilterCallback {
public:
void recv(Message *msg, handle h);

};

// setupFilter() creates an attribute that matches all
// INTEREST messages coming to diffusion routing

handle LogFilter::setupFilter()
{

NRAttrVec attrs;

handle h;

// This attribute matches all interest messages
attrs.push_back(NRClassAttr.make (NRAttribute: :EQ,
NRAttribute: : INTEREST_CLASS)) ;

h = ((DiffusionRouting *)dr_)->addFilter(&attrs,
LOGGING_FILTER_PRIORITY,
filter_callback_);

ClearAttrs(&attrs);

return h;

Step 2: Handle callbacks
// Implement the Filter API callback

void LogFilterReceive::recv(Message *msg, handle h)

{
DiffPrint (DEBUG_ALWAYS, "Received a");

if (msg->new_message_)

DiffPrint (DEBUG_ALWAYS, " new ");
else

DiffPrint (DEBUG_ALWAYS, "n old ");

if (msg->last_hop_ != LOCALHOST_ADDR)
DiffPrint (DEBUG_ALWAYS, "INTEREST message from node %d\n", msg->last_hop_);
else

DiffPrint (DEBUG_ALWAYS, "INTEREST message from agent %d\n", msg->source_port_);

// We shouldn’t forget to send the message back to diffusion routing
((DiffusionRouting *)dr_)->sendMessage(msg, h);

28

References

1]

[6]

John Heidemann, Fabio Silva, and Deborah Estrin. Matching data dissemination algorithms to
application requirements. Technical Report ISI-TR-571, USC/Information Sciences Institute,
April 2003.

John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin,
and Deepak Ganesan. Building efficient wireless sensor networks with low-level naming. In
Proceedings of the Symposium on Operating Systems Principles, pages 146-159, Chateau Lake
Louise, Banff, Alberta, Canada, October 2001. ACM.

John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, and Padmaparma Haldar. Diffusion
filters as a flexible architecture for event notification in wireless sensor networks. Technical
Report ISI-TR-556, USC/Information Sciences Institute, April 2002.

Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networks. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking, pages 56—67, Boston, MA,
USA, August 2000. ACM.

Fred Stann and John Heidemann. Rmst: Reliable data transport in sensor networks. In
Proceedings of the First International Workshop on Sensor Net Protocols and Applications, page
to appear, Anchorage, Alaska, USA, April 2003. USC/Information Sciences Institute, IEEE.

Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient mac protocol for wireless
sensor networks. In Proceedings of the IEEFE Infocom, pages 1567-1576, New York, NY, USA,
June 2002. USC/Information Sciences Institute, IEEE.

29

