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ABSTRACT
Sensor networks have been widely used to collect data about
the environment. When analyzing data from these systems,
people tend to ask exploratory questions—they want to find
subsets of data, namely signal, reflecting some characteris-
tics of the environment. In this paper, we study the problem
of searching for drops in sensor data. Specifically, the search
is to find periods in history when a certain amount of drop
over a threshold occurs in data within a time span. We
propose a framework, SegDiff, for extracting features, com-
pressing them, and transforming the search into standard
database queries. Approximate results are returned from
the framework with the guarantee that no true events are
missed and false positives are within a user specified toler-
ance. The framework efficiently utilizes space and provides
fast response to users’ search. Experimental results with
real world data demonstrate the efficiency of our framework
with respect to feature size and search time.

1. INTRODUCTION
Networks of wireless sensors can record detailed obser-

vations about their surroundings. In the context of envi-
ronmental monitoring, these systems produce rich spatio-
temporal data sets. At James Reserve in the San Jacinto
mountains, a network of twenty-five wireless sensors, ar-
ranged in two parallel lines across a canyon, records air
temperature every five minutes. The network is designed
to collect data to help studying of the occurrences of so-
called Cold Air Drainage (CAD) events. A CAD event in-
volves a sharp drop in temperature in early mornings. The
cold air movements can affect plants and animals that may
be frost-sensitive or humidity-sensitive, affect the spread of
disease, and set micro-geographic limits on plant distribu-
tion. Therefore, it is very important for biologists to study
this type of transient atmospheric events.

Biologists would like to search for CAD events in a large
collection of recorded data at James Reserve, in particular
searching for periods that experience a certain amount of
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drop in temperature within a time span. When we started
our collaboration, we were told that a CAD event involves a
drop of no less than 3 degree Celsius within 1 hour. As our
interactions developed, it became clear that the biologists
needed an exploratory tool, allowing them to pose queries
with different drops and time spans. Note that these queries
are offline queries to historical data instead of online or con-
tinuous queries.

The problem identified above can be formulated as follows:
Users want to search for periods in history when data (1
dimensional time series) reflect the event of no less than b
units change over a time units. The change b and time span
a are both specified by users. Figure 1 (a) shows a day of
data from the CAD transect.
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Figure 1: (a) Data; (b) segments: piecewise linear
approximation of data; (c) a search result overlaid
with segments

A naive approach for solving this problem would be taking
the difference between any two observation values within a
time units and comparing the differences with b on the fly.
Unfortunately, this approach would take several hours for
a reasonably large data set to complete a single search. It
is too expensive. It is not hard to notice that we can store
the differences ∆v between any two values between which
time span ∆t is within w time units so that a standard
range query on ∆v and ∆t can return the search results
much faster than the naive approach as long as a ≤ w. We



call this method the exhaustive search Exh. This approach
requires expensive space cost. It is problematic when the
data volume accumulated in history is large. Furthermore,
the response time will be degraded by the increasingly large
space consumption.

In this paper, we propose the following framework to tackle
the search problem: Data are first segmented into a piece-
wise linear approximation, and then features based on this
representation are extracted and stored in a relational data-
base, and finally standard database queries on features are
issued to return search results. Figure 1 (b) shows the piece-
wise linear approximation of the data in (a). Figure 1 (c)
shows a search result from our framework. The search result
is a tuple of four time stamps indicated by four vertical lines:
(from left to right) The first two indicate a drop starting in
the period between these two time stamps, and the last two
mark the period in which the drop ends. The first two time
stamps are two ends of a segment and so are the last two.
Once the periods indicated by ends of a pair of segments
are found, biologists can further explore the characteristics
of data collected in these periods.

The proposed framework, SegDiff, efficiently utilizes spa-
ce and provides fast response to users’ search, allowing for
exploratory data analysis. Search results are returned with
the guarantee that all true events are included and false
positives are within a user specified tolerance. Although
the application context of our problem is temperature data
collected by sensors, the problem statement in Section 2 is
generalized to time series data and the framework can work
in other contexts.

The paper is organized as follows. In Section 2, we pro-
vide the problem statement. In Section 3, we describe the
intuitive idea of the proposed framework. In Section 4, we
formulate each components of the framework. In Section
5, we present the analysis about quality of returned results
and compression rate. In Section 6, experimental results
about performance are presented. In Section 7, we review
the related work. We conclude our work in Section 8.

2. DATA GENERATING MODEL AND PRO-
BLEM STATEMENT

In real-world applications, time series always come in at
a certain sampling rate. The higher the sampling rate, the
more values generated by nature are collected. Since an
event (a drop) can happen at the time when no data is being
sampled, we need to define a data generating model so that
an event is well-defined and reflected by the sampled data.

Definition 1. Data Generating Model G: Let (ti, vi) and
(ti+1, vi+1) be two consecutive sampled observations in time
series, the observation generated by nature is (t, v) where v
is defined as follows:

• v = vi if t = ti;

• v = vi +
vi−vi+1
ti−ti+1

(t− ti) if ti < t < ti+1;

• v = vi+1 if t = ti+1.

In this definition, we assume that the data missing be-
tween two sampled observations is produced by the linear
interpolation of those two observations.
Problem Statement Given any two observations (t′, v′)
and (t′′, v′′) generated by Data Generating Model G, an
event identified by the time stamps (t′, t′′) is defined as (∆t,

∆v) where ∆t = t′′ − t′ and ∆v = v′′ − v′. Given user-
specified thresholds a and b, the problem is to search for
all events that satisfy the following two constraints for drop
search: 0 < ∆t ≤ a and ∆v ≤ b < 0. The two constraints
for jump search are: 0 < ∆t ≤ a and ∆v ≥ b > 0. An event
satisfying these constraints is a true event. We note that
any of the two observations (t′, v′) and (t′′, v′′) for an event
can be either a sampled observation or an observation that
is not sampled but produced by Data Generating Model G.

3. OVERVIEW OF THE FRAMEWORK
In this section, we describe the intuitive idea of our frame-

work.
Feature space Let us start by reviewing the search prob-

lem. An event that users are searching for consists of two
factors: One is a change ∆v and the other is a time span of
the change ∆t. We can map an event into a two-dimensional
space shown in Figure 2 (left) with one dimension measur-
ing ∆v and the other measuring ∆t. Any point in this space
is associated with two factors (∆t, ∆v), denoting a poten-
tial event. All events reflected in data can be found in this
space. We call this space feature space.

A query region Next let us review the search condi-
tions. A user’s search involves two conditions: One is the
threshold for change b so that |∆v| ≥ b and the other is the
threshold for time span of the change a so that ∆t ≤ a. In
feature space, a user’s search can be easily mapped into a
region satisfying above two conditions as shown in Figure 2
(middle) when the search is about drops. We call this kind
of region a query region. Now it is clear that we can reduce
the search problem into finding periods involving at least
one event with its mapped point in feature space falling into
a query region.

v!

!t0

b

a

v

!t

!

0

v!

!t0

b

a

Figure 2: Feature space (left); a query region (mid-
dle); intersection between a query region and a par-
allelogram(right)

Piecewise linear approximation of data With the
reduced problem in mind, we need to find an efficient repre-
sentation of points in feature space so that the detection of
points falling into a query region can be quickly answered
without considering all potential points reflected by data.
The essence of change ∆v and time span ∆t naturally leads
to linear approximation of data: Each piece of data can be
locally approximated by a line. A piece of data is called a
sub-series and its line approximation is called a segment. A
segment characterizes the regularity of change ∆v and time
span ∆t in its corresponding sub-series. Data consists of
many sub-series and can be approximated by their segments
(Figure 1 (b)).

Parallelogram representation of features Although
a segment is a good summary of points in feature space for
its sub-series, it is impossible to summarize a point that cor-
responds to an event occurring across two sub-series. Fig-
ure 3 illustrates this problem. It shows two sub-series AB



and CD from the same series and their corresponding linear
approximation—two segments. Point B′ is a point in AB
and point C′ is a point in CD. Suppose that the drop from
C′ to B′ and its corresponding time span satisfies the search
conditions. Then this event is denoted by a point in feature
space falling into the query region. One single segment itself
is clearly incapable of characterizing events of this kind since
information from the other segment is missing. This leads
to the motivation of our key representation of features—
parallelograms. Figure 4 shows the two segments the same
as the ones in Figure 3 and a parallelogram in feature space.
This parallelogram is constructed from the two segments by
linearly connecting four points in feature space: The point
associated with B and C, the point associated with B and
D, the point associated with A and D, and the point as-
sociated with A and C. The idea is to use events among
four ends from two segments to capture all events occurring
across these two segments. For example, the event happen-
ing at B and C and the event happening at B and D can be
used to capture all events occurring at B and any point in
CD—the slope of CD is a fixed number. Similar situations
exist for other combinations of points. Such a parallelo-
gram is capable of summarizing any point whose associated
event occurs across two sub-series (Lemma 3 provides de-
tails about this later). In addition, when two segments are
from the same sub-series, their parallelogram degenerates to
a segment, representing any point associated with an event
occurring within the segment’s sub-series.
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Figure 3: Two sub-series (left) and the correspond-
ing segments (right)

Intersection between a parallelogram and a query
region With parallelograms summarizing all events in data,
we just need to detect intersection between a query region
and all parallelograms in feature space. Figure 2 (right)
shows an intersection. A returned parallelogram contains
at least one point falling into the query region. Therefore,
the periods associated with the two segments experience at
least one event satisfying the search conditions.

Corner point reduction and range queries for in-
tersection detection Although four corner points uniquely
identify the position of a parallelogram, not all four corner
points are necessary for intersection detection. As shown in
Figure 2 (right), it is sufficient to record two corner points
associated with the lower left boundary of the parallelogram
to detect the intersection between the query region and the
parallelogram for this case. Then simple standard range
queries on the coordinates of two corner points can be used
to detect intersection. In this way, our framework success-
fully solves the search problem.

4. THE FRAMEWORK
In this section, we first formally define the goal of our

proposed framework and then present each component of

the framework. Our framework provides an approximate
solution for the search problem defined in Section 2. Since
the approximation involves piecewise linear segmentation of
the input time series data, we need to define a metric to
measure the quality of the approximation.

Definition 2. Piecewise Linear Approximation: Given da-
ta (t, v) generated by Data Generating model G and a user
specified error tolerance ε where ε ≥ 0, the piecewise linear
approximation of the data is a piecewise linear function f
satisfying |f(t)− v| < ε/2.

This definition says that a value on a segment from piece-
wise linear approximation of a time series is bounded within
a certain range of the original value.

The goal of our framework is to return any period asso-
ciated with a pair of segments that experiences at least one
drop (or jump) within a certain error tolerance. Specifi-
cally, all true events should be found, and all returned false
positives should be within a certain error tolerance.

Definition 3. Goal: Given (1) data (t′, v′) and (t′′, v′′)
generated by Data Generating Model G, (2) a user-specified
error tolerance ε where ε ≥ 0, (3) its piecewise linear ap-
proximation f , and (4) user-specified thresholds a and b, let
tC and tD be time stamps of two ends of a segment CD from
f , and let tA and tB be time stamps of two ends of another
segment AB from f , the goal of our framework is to identify
all tuples ((tD, tC), (tB , tA)) satisfying the following con-
dition: There exists a pair of time stamps (t′, t′′) so that
(1) tD ≤ t′ ≤ tC and tB ≤ t′′ ≤ tA; (2) 0 < ∆t ≤ a and
∆v ≤ b+2ε (0 < ∆t ≤ a and ∆v ≥ b−2ε) for drop search
(for jump search) where ∆t = t′′ − t′ and ∆v = v′′ − v′.

It is clear that all true events for drop search with ∆v ≤ b
will satisfy ∆v ≤ b+2ε and thus should be found if the goal
is achieved by our framework. Any returned false positive is
within 2ε error tolerance. We note that in our framework an
event is not returned by its time stamps (t′, t′′) but returned
in the form of the time stamps of the ends of two segments
involving that event. A returned tuple ((tD, tC), (tB , tA))
can involve multiple true events.

Users need to provide an additional fact: What is the
longest time span or time window they would be interested
in? This fact is pre-defined by users through a constant w.
Any a ≤ w is supported by our framework. For example, w
can be 24 hours if users do not care about any event whose
time span is longer than one day. Figure 6 shows a time
window in our framework.

With the notations summarized in Table 1, we describe
our framework in the following sub-sections.

4.1 Segmentation and piecewise linear approx-
imation

Since our feature representation is based on piecewise lin-
ear approximation of data, we need a segmentation algo-
rithm to achieve the approximation defined in Definition 2.
There are many existing algorithms for segmentation. A
good review is provided by [5]. We choose one of them for
our purpose: The generic online sliding window algorithm is
described in Section 2.1 of [5] and linear interpolation is used
for approximation. The maximum error for segmentation is
ε/2 where ε is specified by users. That is, the absolute differ-
ence between any value of a segment and its corresponding



Notation Description

a Threshold for time span
b Threshold for drop (jump)
ti Time stamp of an observation i
vi Value at time stamp ti

∆vij ∆vij = vi - vj where ti ≥ tj

∆tij ∆tij = ti - tj where ti ≥ tj

ε Error tolerance
w w time units, the width of a time window
r Compression rate of segmentation
n Total number of observations

Table 1: Summary of notations used in the paper

original value of the series should be no greater than ε/2.
Given a time series (t0, v0), (t1, v1), . . . where ti < tj if
i < j and a user-defined error tolerance ε, the output of
segmentation is piecewise linear approximation of the input
series: Segments. Each segment is denoted by ((ts, vs), (te,
ve)) where (ts, vs) is the start observation represented by
that segment and (te, ve) the end observation. Readers in-
terested in the details of segmentation can refer to [5].

We next show that the segmentation process achieves the
approximation in Definition 2.

Lemma 1. Let f be the function of piecewise linear ap-
proximation output by the segmentation process, (t, v) be
the data generated by Data Generating Model G. Then we
have

|f(t)− v| ≤ ε/2

Proof. The proof is trivial for the case when (t, v) is a
sampled observation (ti, vi) in the input time series which
is ensured by the segmentation process. We next show that
the lemma holds when (t, v) is not a sampled observation.
Suppose (t, v) is in between two consecutive sampled obser-
vations (ti, vi) and (ti+1, vi+1) whose corresponding points
on a segment are (ti, f(ti)) and (ti+1, f(ti+1)) . Then we
have ti < t < ti+1. We conduct the proof by contradiction.
Assume that |f(t) − v| > ε/2. Let us consider the case of
v − f(t) > ε/2.

v − f(t) > ε/2.⇒
vi +

vi+1−vi

ti+1−ti
(t − ti)− (f(ti) +

f(ti+1)−f(ti)

ti+1−ti
(t − ti)) > ε/2

because (1) point (t, v) is on the line interpolated by points
(ti, vi) and (ti+1, vi+1) and (2) point (t, f(t)) is on the
segment which contains points (ti, f(ti)) and (ti+1, f(ti+1)).
⇒

Equivalently,

vi − f(ti) +
(vi+1−f(ti+1))−(vi−f(ti))

ti+1−ti
(t− ti) > ε/2. ⇒

Case 1 : If (vi+1 - f(ti+1)) > (vi - f(ti)),
vi − f(ti) + (vi+1 − f(ti+1))− (vi − f(ti)) >

vi − f(ti) +
(vi+1−f(ti+1))−(vi−f(ti))

ti+1−ti
(t− ti) > ε/2

since t−ti
ti+1−ti

< 1.

⇒ vi+1 − f(ti+1) > ε/2. Contradiction achieved.
Case 2 : If (vi+1 - f(ti+1)) ≤ (vi - f(ti)),
vi − f(ti) ≥
vi − f(ti) +

(vi+1−f(ti+1))−(vi−f(ti))

ti+1−ti
(t− ti) > ε/2

since t−ti
ti+1−ti

> 0.

⇒ vi − f(ti) > ε/2. Contradiction achieved.
With similar derivation, we can achieve contradiction for

v − f(t) < −ε/2. Therefore, the lemma is true.

Compared to the difference between any two observation
values, the difference between two corresponding values on
segments is at most off by the user-defined error tolerance
ε. Lemma 2 formulates this claim.

Lemma 2. Let f be the function of piecewise linear ap-
proximation output by the segmentation process, (t′, v′) and
(t′′, v′′) be the data generated by Data Generating Model G.

v′ − v′′ − ε ≤ f(t′)− f(t′′) ≤ v′ − v′′ + ε

Proof. By Lemma 1, v′ − ε/2 ≤ f(t′) ≤ v′ + ε/2 and
−v′′ − ε/2 ≤ −f(t′′) ≤ −v′′ + ε/2. The addition of the two
inequalities produces the result of Lemma 2.

4.2 Feature Representation
In order to present our feature representation scheme, we

first define the following concepts. Feature space is a space
with two orthogonal dimensions: One dimension measures
difference ∆vij = (vi−vj) and the other measures time span
∆tij = (ti − tj). A query region is a region in feature space
defined by the search thresholds a and b so that ∆vij ≤
b < 0 (∆vij ≥ b > 0) and 0 < ∆tij ≤ a for drop search
(for jump search). A point (∆tij , ∆vij) in feature space
is called a feature point, denoted by IJ . A segment that
linearly connects two feature points IJ (∆tij , ∆vij) and I ′J ′

(∆ti′j′ , ∆vi′j′) in feature space is called a feature segment,
denoted by (IJ , I ′J ′).

We design feature parallelograms to represent features used
for search. A feature parallelogram essentially summarizes
features that could be produced by taking differences be-
tween any two points on two segments output by the seg-
mentation process.
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Figure 4: Two segments (left) and the correspond-
ing parallelogram in feature space (right)

Lemma 3. Given two segments CD ((tC , vC), (tD, vD))
and AB ((tA, vA), (tB , vB)) output by the segmentation pro-
cess where tB ≥ tC , (1) the quadrangle formed by linearly
connecting the four feature points BC (∆tBC , ∆vBC), BD
(∆tBD, ∆vBD), AD (∆tAD, ∆vAD), and AC (∆tAC , ∆vAC)
in feature space is a parallelogram and (2) the region of this
parallelogram (BC, BD, AD, AC) captures all features (time
span, difference) associated with any two points with one
point on segment AB and the other on segment CD.

Proof. We first prove that the quadrangle (BC, BD, AD,-
AC) is a parallelogram. Then we consider points on bound-
aries of a parallelogram and describe the properties of seg-
ments inside a parallelogram. Finally we use these results
to prove the second part of Lemma 3.

Figure 4 shows two segments and their corresponding fea-
ture parallelogram in feature space. In this figure, the order



vA < vB < vD < vC is irrelevant to the following derivations
but is included here for descriptive purpose.

A parallelogram Feature segment (BC, BD) has the

slope ∆vBD−∆vBC
∆tBD−∆tBC

where the numerator is (vB−vD)−(vB−
vC) = vC−vD and the denominator is (tB−tD)−(tB−tC) =
tC − tD. This shows that feature segment (BC, BD) has
the same time span and the same slope as segment CD in
the left. By following the same derivation, we can show that
feature segment (AC, AD) has the same time span and the
same slope as segment CD. Similarly, we can show that
feature segments (BC, AC) and (BD, AD) have the same
time span and the same slope as segment AB in the left.
Therefore, feature segments (BC, BD), (AC, AD), (BC,
AC) and (BD, AD) form a parallelogram in feature space.
We use (BC, BD, AD, AC) to denote the parallelogram.

Points on boundaries of a parallelogram We examine
a point C′ on the segment CD in the left of Figure 4 and
its related feature points in the right.

Feature segment (BC, BC′) has the same slope as feature
segment (BC, BD) because (1)
∆vBC′−∆vBC

∆tBC′−∆tBC
=

(vB−vC′ )−(vB−vC)

(tB−tC′ )−(tB−tC)
=

vC−vC′
tC−tC′

= vC−vD
tC−tD

where the last quantity is the slope of segment CD and (2)
segment CD has the same slope as feature segment (BC,
BD). The last equality in (1) holds since segment CC′ has
the same slope as segment CD.

Since (1) feature segment (BC, BC′) has the same slope
as feature segment (BC, BD) and (2) tD ≤ tC′ ≤ tC (C′

is on segment CD) and ∆tBC ≤ ∆tBC′ ≤ ∆tBD, feature
point BC′ representing (∆tBC′ , ∆vBC′) is on feature seg-
ment (BC, BD). As C′ is an arbitrary point on segment
CD, feature segment (BC, BD) summarizes feature (∆tBC′ ,
∆vBC′) associated with point B and an arbitrary point C′

on segment CD.
Similarly, feature point B′C is on feature segment (BC,

AC) where point B′ is on segment AB. Feature segment
(BC, AC) summarizes feature associated with point C and
an arbitrary point B′ on segment AB.

Segments inside the parallelogram We claim that fea-
ture segment (B′C, B′D) must summarize feature associ-
ated with point B′ and an arbitrary point on segment CD.
Let us consider the situation where segment AB is scaled
(or shrunk) to AB′ with the same slope. In this case, fea-
ture segment (BC, BD) is moved to feature segment (B′C,
B′D) and the parallelogram (BC, BD, AD, AC) is scaled
(or shrunk) to the parallelogram (B′C, B′D, AD, AC). As
we have shown above that feature segment (BC, BD) sum-
marizes feature associated with point B and an arbitrary
point C′ on segment CD, feature segment (B′C, B′D) sum-
marizes feature associated with point B′ and an arbitrary
point C′ on segment CD. Thus, the claim is true.

Let us next think about the above situation inversely: If
segment AB′ is continuously scaled from segment AA (of
zero length) to segment AB, feature segment (B′C, B′D)
moves from feature segment (AC, AD) to feature segment
(BC, BD) and it summarizes the feature associated with an
arbitrary point B′ on segment AB and an arbitrary point C′

on segment CD. The region of parallelogram (BC, BD, AC,-
AD) is swept by feature segment (B′C, B′D) in this move-
ment. Therefore, the second part of Lemma 3 is true.

We note that a parallelogram degenerates to a feature seg-
ment in feature space if the two segments for its construction
are the same, that is, they are from the same sub-series. The

degenerated parallelogram in feature space summarizes any
point whose associated event occurs within the sub-series.
Therefore, a parallelogram can be used to summarize any
event occurs either across two segments or within a segment.

4.3 Feature Extraction

4.3.1 Feature Reduction of Parallelograms
If four corner points are collected for a feature parallelo-

gram, they uniquely define the parallelogram and thus they
can be used to detect whether a parallelogram intersects
a query region. But some corner points are redundant for
detecting intersection because of the shapes of the query re-
gions and the parallelograms. Since a parallelogram’s shape
is determined by the slopes of its two corresponding seg-
ments, we enumerate all possible cases of two slopes to find
necessary corners for detecting intersection. Essentially, a
query region of drop (jump) search must intersect
the lower (upper) left boundary of a feature paral-
lelogram if it intersects the parallelogram. Suppose
AB and CD are two segments output by the segmentation
process and their slopes are kAB and kCD. All possible cases
are listed in Table 2. Let us examine the drop search in case
1.

Since segment AB and segment CD can denote different
absolute values (say, temperature), the parallelogram can
move around in feature space with varying size. But as long
as the two slopes satisfy the condition of this case, the rel-
ative positions of four boundaries of a parallelogram hold
as demonstrated in Figure 5 by its construction in Lemma
3. Specifically, feature segment (BC, AC) and feature seg-
ment (BD, AD) cannot exchange their positions since (1)
∆tBC ≤ ∆tBD and (2) kCD ≥ 0 and (3) ∆vBC ≤ ∆vBD.
Similarly, feature segment (AC, AD) and feature segment
(BC, BD) cannot exchange their positions. Therefore, fea-
ture segment (BC, AC) is always the lower left boundary of
the parallelogram.

∆
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Figure 5: Boundary conditions of case 1

As shown in Figure 5, if a query region intersects a paral-
lelogram with this kind of shape, one of the following three
sub-cases must hold: Feature point BC falls into the region;
feature point AC falls into the region; part of feature seg-
ment (BC, AC) is inside the region but neither feature point
BC nor feature point AC is in the region. Feature segment
(BC, AC) is the lower left boundary of the parallelogram.
Therefore, we only need to record the features associated
with feature points BC and AC to represent that boundary
and detect intersection. The solid circles in Figure 5 mark
the two points for each parallelogram. Similarly, the broken-
line circles in Figure 5 mark the two feature points BC and
BD, the corners of the upper left boundary of each paral-
lelogram to support jump search. The corners in remaining



Case Slopes Type Corners

1 kCD ≥ 0, drop BC, AC
kAB ≤ 0 jump BC, BD

2 kCD ≥ 0, drop BC
kAB ≥ kCD jump I BC, AC,AD

jump II AD, AC
3 kCD ≥ 0, drop BC

0 < kAB < kCD jump I BC, BD, AD
jump II AD, BD

4 kCD < 0, drop BC, BD
kAB ≥ 0 jump BC, AC

5 kCD < 0, drop I BC, AC, AD
kAB ≥ kCD drop II AC, AD

jump BC
6 kCD < 0, drop I BC, BD, AD

kCD < kAB < 0 drop II BD, AD
jump BC

Table 2: Necessary corners of a parallelogram con-
structed from segments AB and CD for detecting
intersection

five cases can be founded in the same manner. The details
are provided in Appendix.

The case analysis in Table 2 determines the corner points
whose features should be collected according to different
slopes of two segments for detecting intersection between a
query region and a parallelogram. But due to segmentation
errors, some true events in data may be missed by above de-
tection. The difference between two points on segments is at
most ε off from the difference between their corresponding
original values by Lemma 2. Since the differences captured
by a parallelogram are for two points on segments, they are
at most ε off from the original values. Lemma 4 provides
the solution for capturing all true events.

Lemma 4. If all feature parallelograms are shifted down
(up) by ε in feature space, intersection regions between a
query region for drop (jump) search and all parallelograms
capture all true events’ features (time span, difference).

Proof. Suppose (∆t, ∆v′) is a feature point in a paral-
lelogram and its corresponding original feature is (∆t, ∆v).
Suppose ∆v ≤ b < 0 and ∆t ≤ a. Then for drop search, this
feature indicates a true event. By the condition ∆v ≤ b, we
have ∆v + ε ≤ b + ε. By Lemma 2, ∆v′ ≤ ∆v + ε. Then, we
have ∆v′ ≤ b + ε and equivalently ∆v′ − ε ≤ b. By shifting
a parallelogram down by ε, the feature point (∆t, ∆v′) is
shifted to (∆t, ∆v′′) where ∆v′′ = ∆v′ − ε. From the above
derivation, ∆v′′ ≤ b. Therefore, for drop search, a true
event is never outside intersection region between a query
region and all shifted parallelograms. By symmetry, the
same conclusion can be achieved for jump search by shifting
all parallelograms up by ε. The lemma is proved.

We are ready to state specific features to be collected for
case 1 in Table 2. To guarantee that no event in data is
missed due to segmentation errors, SegDiff collects features
as follows: If ∆vAC − ε ≤ 0, the features (∆tBC , ∆vBC − ε)
and (∆tAC , ∆vAC − ε) are collected; if ∆vBD + ε > 0, the
features (∆tBC , ∆vBC + ε) and (∆tBD, ∆vBD + ε) are col-
lected. The first condition checks whether a parallelogram
contains any drop; the second checks whether a parallel-
ogram contains any jump. By Lemma 2 and Lemma 4,

Algorithm 1 FeatureExtraction
Input Segments ((ts, vs), (te, ve)) . . . output by the seg-
mentation process where the segments are in temporal order,
that is, the end point of a previous input segment is always
the start point of the current input segment; a user-defined
error tolerance ε; a user-defined width of a time window w
Output Database tables containing features to support
search
1: while a segment ((ts, vs), (te, ve)) newly generated from

the segmentation process do
2: tB ← ts; vB ← vs; tA ← te; vtA ← ve

3: the end time of a time window win.end← tA

4: the start time of a time window win.start ←
win.end− (tA − tB)− w

5: for each previous segment ((tD, vD), (tC , vC)) within
the window defined by (win.start, win.end) do

6: according to the description in Section 4.3.1, fea-
tures are collected for intersection detection with
the input parameters of segment CD and segment
AB as (tD, vD), (tC , vC), (tB , vB), (tA, vA)

7: end for
8: end while

the conditions consider the worst scenario: The difference
between two points on the segments is ε off from the dif-
ference in an original event, and thus parallelograms are
shifted down (up) by ε for drop (jump) search to capture
this kind of events. We notice that the above scheme will
bring false positives. We can, however, guarantee that one
returned drop (jump) is always within 2ε of drop (jump) in
true events. The analysis is presented in Section 5. Specific
features to be collected for other cases can be given in the
same manner as above.

In the case analysis shown by Table 2, we notice that at
most three corner points are needed (for example, in the case
of jump search of case 2), and in some case only one corner
point is enough (for example, in the case of drop search of
case 2). The expected number of corner points depends on
the case distribution in segments.

4.3.2 The Procedure

win.end

w

w
A

B

AtB t 

C

D

win.start

Figure 6: A time window

Algorithm 1 describes how SegDiff extracts features in an
online manner. For each newly generated segment, the fea-
tures between this segment and other segments in a time
window are computed. Figure 6 shows a time window.
When the start time tD of segment CD is earlier than -
win.start, the segment is truncated at the time win.start
(line 4) and is treated to start from win.start (line 5). The
window with the newly defined width (win.end−win.start)
includes all segments CD’s which represent points whose



time stamps are within w of the time stamp of any point on
segment AB. Therefore, all possible events with end time
between tA and tB and time span no greater than w are
captured by parallelograms constructed from segment AB
and every segment CD within the window.

Both the segmentation process and Algorithm 1 are on-
line processing on their inputs. The features can thus be
extracted as soon as data are being collected or uploaded.
The benefit is that there is no considerable delay for users
to search new data in terms of feature extraction process.

4.4 Queries
We can use two simple range queries to retrieve bound-

ary time points ((tD, tC), (tB , tA)) for two segments CD and
AB containing at least one event by checking intersection
between a query region and extracted features. The inter-
section falls into two types: One for detecting whether a
feature point is in a query region; the other for detecting
whether a feature segment (a boundary of a parallelogram)
with its two ends outside the region intersects a query re-
gion. We call the first type point query and the second type
line query. For example, to perform drop search for case 1
in Figure 5, SegDiff only needs the union of the results of
two point queries and one line query: One point query is for
checking feature point BC, the other is for checking feature
point AC and the line query is for checking feature segment
(BC, AC). We list these two types of queries in the context
of drop search.
Point query Given a feature point (∆t, ∆v), the following
conditions are used to detect whether it is in the query re-
gion: ∆t ≤ a and ∆v ≤ b. B-tree index can be built on the
concatenation of ∆t and ∆v.
Line query Given a feature segment ((∆t′,∆v′), (∆t′′,∆v′′))
where ∆t′ ≤ ∆t′′, the following conditions are used to detect
whether its two ends are outside the region and whether it
intersects a query region: ∆t′ ≤ a and ∆v′ > b and ∆t′′ > a

and ∆v′′ < b and ∆v′+ ∆v′′−∆v′

∆t′′−∆t′ (a−∆t′) ≤ b. B-tree index

can be built on the concatenation of ∆t′, ∆v′, ∆t′′, and
∆v′′.

5. ANALYSIS

5.1 Approximation
A false positive can be at most 2ε different from the origi-

nal event. One ε is from error in segmentation and the other
is from shifting parallelograms.

Lemma 5. A pair of segments returned by SegDiff con-
tains at least one event with drop ∆v ≤ b + 2ε (jump ∆v ≥
b − 2ε) and time span 0 < ∆t ≤ a where b and a are user-
specified thresholds for drop (jump) search.

Proof. By the queries specified by in Section 4.4, the
parallelogram of a pair of segments returned for drop search
at least contains a feature point (∆t, ∆v′′) so that 0 < ∆t ≤
a and ∆v′′ ≤ b. Suppose its original feature is (∆t, ∆v′)
before a parallelogram is shifted. Since the parallelogram is
shifted down ε to exclude all false negatives, ∆v′ = ∆v′′+ ε.
Suppose the original event in the data has feature (∆t, ∆v),
∆v ≤ ∆v′ + ε by Lemma 2. Combining the equality ∆v′ =
∆v′′ + ε and two inequalities ∆v ≤ ∆v′ + ε and ∆v′′ ≤ b,
we have ∆v ≤ ∆v′′ + 2ε ≤ b + 2ε.

Theorem 1 states the search quality guarantee of SegDiff.

Theorem 1. No true event is missed by SegDiff; false
positives have the property of drop ∆v ≤ b + 2ε (jump ∆v ≥
b − 2ε) and time span 0 < ∆t ≤ a where b and a are user-
specified thresholds for drop (jump) search.

Proof. Since SegDiff records the features associated with
parallelograms that are shifted down (up) by ε for drop
(jump) search, the condition of Lemma 4 is satisfied. By
that lemma, intersection between a query region and par-
allelograms captures all true events. The queries specified
in Section 4.4 for detecting above intersection are issued to
get any pair of segments whose feature parallelogram inter-
sects a query region. Therefore, the firs part of the theorem
is true. The second part of the theorem is true by Lemma
5.

We note that given the data of Data Generating Model
G in Definition 1, it is impossible for the exhaustive search
Exh to find all true events because it only considers the
differences between the sampled observations. As we men-
tioned, a drop can happen when no data is being sampled.
Exh cannot capture events of this type. Since all proofs in
our framework hold for any data generated by G, the search
performed in our framework does not differentiate sampled
observations and unobserved ones, and thus can always re-
turn all true events reflected by G.

5.2 Compression
SegDiff uses less space than Exh for the following two rea-

sons. (1) In each time window, SegDiff computes features
between each newly generated segment and all segments in a
time window, so the number of features in a time window is
proportional to the number of segments in that window. The
number of features in a window for Exh, however, is propor-
tional to the number of data points in that window. (2) The
number of time windows for SegDiff’s feature extraction is
proportional to the total number of segments while the num-
ber of windows for Exh’s is proportional to the total number
of data points. The first gain is denoted by the term nw

mw

where nw is the number of data points in a time window
of width w and mw is the number of segments in a time
window with the width defined in Section 4.3.2. The second
gain is denoted by the compression rate of segmentation r
which is defined as the number of observations represented
by one segment on average. These two gains are achieved
by piecewise linear approximation of data and parallelogram
representation of features.

In addition, SegDiff does not record all four corner points
for each feature parallelogram but only necessary ones. The
term c1

c2
is used to denote this reduction where c1 is the

number of columns for a database table in Exh and c2 is the
one in SegDiff. c1 = 3 since one row has time span, differ-
ence, and an absolute time stamp for uniquely identifying
an event. 5 ≤ c2 ≤ 7 and the exact value is case-dependent.
In the cases of one corner point, c2 = 5 with two columns
as time span and difference, and three columns as abso-
lute time stamps for uniquely identifying two segments (the
fourth absolute time stamp can be computed on the fly). In
the cases of two corner points, c2 = 6. In the cases of three
corner points, c2 = 7.

The space saving in feature size by using SegDiff in com-
parison with Exh is ( c1

c2

nw
mw

r). That is, Exh uses ( c1
c2

nw
mw

r)
times space as much as SegDiff does.

We note that mw is not a constant by its definition, and



r is a simple estimate of the number of observations rep-
resented by one segment. Therefore, although the above
analysis sheds lights on the space saving of SegDiff in com-
parison with Exh, it is important to evaluate their empirical
performance.

6. EXPERIMENTS
We investigate the performance of our approach SegDiff

and the exhaustive search Exh in different settings with the
data collected by the Cold Air Drainage Transect from De-
cember, 2005 to November, 2006. The data are preprocessed
by a smoothing method with robust weights so that anoma-
lies are removed. A subset of data is used in Section 6.1, 6.2,
and 6.4 for experimentation efficiency. All data are used in
Section 6.3.

All experiments are conducted on a dedicated computer
with an Intel Core Duo 2.0 GHz processor, 2 gigabyte 667
DDR2 SDRAM, and a 100GB 1.5Gps SATA disk. The op-
erating system is Mac OS X 10.4.9. MySQL 5.0.37 database
implementation is used for feature storage. Standard SQL
queries are used for retrieval. Each experiment is repeated
10 times and average values are reported. The default pa-
rameter settings are ε = 0.2, w = 8 hours, a = 1 hours and
b = −3 degree Celsius if not explicitly mentioned. In Section
6.1, 6.2 and 6.3, operating system cache is flushed before ev-
ery query. The situation where system cache is available is
studied in Section 6.4. In that situation, indexes and pre-
viously hit disk blocks can remain in memory. Query cache
and key cache in database are turned off for all experiments.

We use feature size and disk size to measure space usage.
Disk size is the sum of feature size and index size. Query
execution time by sequential scan and query execution time
using indexes are used to measure time efficiency.

6.1 Performance with different tolerances
Compression rates with different tolerances Table 3 sum-

marizes different compression rates under different error tol-
erances. The range of drops in this data set is from 0 to -35
degree Celsius. Therefore, ε = 1 degree Celsius is a reason-
ably tight tolerance. For the query 3 degree drop within 1
hour, ε = 0.2 may be good enough for users since it provides
the guarantee that a pair of returned segments contains at
least one event with at least 2.6 degree drop within 1 hour
and no true event is missed. From Table 3, we can see that
when the tolerance becomes larger, which leads to less seg-
ments produced, the compression rate becomes higher.

ε 0.1 0.2 0.4 0.8 1.0

r 4.73 7.03 10.52 16.10 18.55

Table 3: Compression rate r under different segmen-
tation error tolerances

Feature size with different compression rates We next ex-
amine how much space SegDiff uses with different degrees
of approximation. Figure 8 shows that the feature size is re-
duced when the compression rate r increases and the curve
has the shape of r−1. This follows our analysis in Section 5.2:
The number of segments is inversely proportional to r and
so is the total number of windows. The features generated
by Exh is about 383 megabytes, 12 times larger than the
size (about 32 megabytes) of features generated by SegDiff
for ε = 0.2 and r = 7.03.

Figure 7 show that SegDiff gains one order of magnitude
of space saving with the compression rate r greater than 7.
If a query involves a larger magnitude of drop, a larger ε is
admissible and orders of magnitude of space saving can be
achieved by SegDiff.
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Figure 7: Ratio of feature sizes with different r’s

Disk size with different compression rates Figure 9 shows a
similar trend to the one in Figure 8. Comparing the numbers
on these two figures, we can see that the overhead of B-tree
indexes for SegDiff is non-trivial, about 1.1 times as large
as feature size. This overhead comes from B-tree indexes on
multiple columns. Following the way described in Section
4.4, some columns are repeatedly involved in index building
process. This makes index size larger than feature size. The
size of B-tree indexes for Exh is about half of feature size.
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Figure 8: Feature
sizes with different
r’s (Exh’s feature size:
383 megabytes)
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Figure 9: Disk sizes with
different r’s (Exh’s disk
size: 592 megabytes)

Corner cases Table 4 reports corner case distributions un-
der different error tolerances. For example, when ε = 0.2,
19.83% cases need only one corner to support queries. By
taking the average 1× 19.83% + 2× 46.79% + 3× 33.37% =
2.13, we effectively have two corner points cases. It means
that the case analysis from Section 4.3.1 effectively reduces
the storage of parallelograms’ corners by half. This is true
for all other ε’s.

ε 0.1 0.2 0.4 0.8 1.0

one corner 17.05 19.83 22.67 25.88 26.90
two corners 46.43 46.79 47.09 47.25 47.10
three corners 36.52 33.37 30.24 26.87 26.00

Table 4: The percentage of different corner cases
under different error tolerances

Query execution time with different compression rates Fig-
ure 10 shows the sequential scan time decreases when com-
pression rate increases in the same manner as that in Figure
8. Figure 11 shows the similar situation for execution time
using indexes. We see that indexes do not help in the case



of the query of 3 degrees drop within 1 hour in both ap-
proaches: The execution time using indexes is much slower
than the sequential scan time. As we will see later in Section
6.4, this specific query falls into a hard region for both ap-
proaches in feature space where it retrieves a large number
of tuples, making the indexing access inefficient.
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Figure 10: Sequential
scan time with different
r’s (Exh’s time: 6.44 sec-
onds)
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Figure 11: Execution
time using indexes with
different r’s (Exh’s time:
386.77 seconds)

Ratio of execution time Table 5 lists space saving rf and
the time gain rst for sequential scan. Table 6 shows the
situation when indexing is used. With indexes, the perfor-
mance difference in time becomes even larger. For ε = 0.2,
Exh’s query execution time is 6.69 times as long as SegDiff’s
for sequential scan but the former is 21.35 times as long
as the latter by using index. Since the number of features
from Exh can be an order of magnitude larger than the one
from SegDiff, B-tree indexes can be much taller than the
ones for SegDiff and thus Exh becomes even slower. This,
again, demonstrates the strength of the compression design
in SegDiff.

ε 0.1 0.2 0.4 0.8 1.0

rf 5.88 11.95 23.96 48.57 61.71
rst 3.19 6.69 11.20 17.65 19.22

Table 5: Ratio of feature sizes rf and ratio of se-
quential scan time rst with ε varied

ε 0.1 0.2 0.4 0.8 1.0

rd 4.26 8.66 17.37 35.33 44.42
rit 5.88 21.35 85.93 217.00 279.34

Table 6: Ratio of disk sizes rd and ratio of execution
time using indexes rit with ε varied

6.2 Performance with different window sizes
We fix ε = 0.2 to evaluate the impact of window sizes w

on performance of SegDiff and Exh. Figure 12 shows that
feature sizes of both approaches appear to grow linearly with
w. However, Table 7 shows the ratio of feature sizes rf

actually increases with w. There is an order of magnitude
difference when w is 8 hours. This is because the number
of observations in a window nw increases almost linearly as
w increases, but the number of segments in a time window
mw does not necessarily grow linearly as w increases—linear
growth is the worst case when every two consecutive points
are connected by a segment. The similar situation exists
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Figure 12: Feature size
with w varied
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Figure 13: Sequential
scan time with w varied

for disk sizes (Table 7). In this case, when users want a
system to support queries with larger time spans, SegDiff’s
advantage becomes more significant. Figure 13 shows the
trend of the sequential scan time for the query follows the
same pattern as shown in Figure 12.

w 1 4 8 12 16

rf 5.89 9.98 11.97 13.14 13.94
rd 4.51 7.30 8.66 9.53 10.18

Table 7: Ratio of feature sizes rf and ratio of disk
sizes rd with w varied

6.3 Performance with the increasing number
of observations

Sensors often continuously collect data for a long period
of time and accumulate a large volume of data. It is impor-
tant to examine the scalability of SegDiff with the increasing
number of observations. We split data into 5 groups. Stor-
age and query execution time is checked after one group of
data’s features are incrementally inserted into the database.
It would take too much time to complete Exh’s experiments
so we abort them after the second groups’ features are in-
serted into the database. But the results still show us how
two approaches behave when the number of observations n
goes large. Figure 14 shows that the feature size of SegDiff
grows almost linearly with n. This is reasonable: The num-
ber of windows is the total number of observations n divided
by the compression rate r, and r is assumed to be about the
same when the error tolerance ε is fixed.
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Figure 14: Feature size
with n increased
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creased

Space usage For the first two groups with complete exper-
iments, the space saving rf is 12.26: With 108 megabytes,
SegDiff can handle these two groups while Exh needs 1,328
megabytes. With one quarter of 1,328 megabytes, SegDiff



can handle all groups’ data while the estimate of Exh’s fea-
ture size is about 3,416 megabytes. The estimates of Exh’s
feature size are marked by the dotted line in Figure 14. The
analysis in Section 5.2 shows that Exh’s feature size should
grow linearly with n when window size is fixed, and thus we
can get estimates by extrapolating the line of two observed
results in Figure 14. The disk size of Exh is an order of
magnitude larger than SegDiff’s disk size for handling two
groups.

Execution time Figure 15 shows that sequential scan time
grows almost linearly with n and SegDiff can return results
for all sensors within 10 seconds. As for execution time using
indexes, Exh is 18 times slower than SegDiff for handling two
groups.

6.4 Performance with different query regions
We investigate the query time of SegDiff and Exh with

random queries. Figure 16 shows the coverage of these ran-
dom queries. We first examine the situation where system
cache is available. This presents the case where both previ-
ously hit disk blocks and indexes can remain in memory.
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Figure 16: The coverage of random queries

Sequential scan with cache available Figure 17 and Figure
18 share a similar pattern in sequential scan time and the
horizontal lines mark boundaries for hard queries in both
figures. Among them, the ones that are hard for both ap-
proaches are denoted by solid dots in Figure 16. As we
can see, the hard area is at the top right triangular region.
This is what we expected: The larger a query region is,
the more results it retrieved; both approaches have to take
longer time.
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Figure 17: Exh’s se-
quential scan time with
cache
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Figure 18: SegDiff’s se-
quential scan time with
cache

Indexing with cache available Figure 19 and Figure 20
show execution time using indexes. Again, a similar pattern
exists in these two figures but with SegDiff’s time shifting
much lower.
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Figure 19: Exh’s execu-
tion time using indexes
with cache
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Figure 20: SegDiff’s ex-
ecution time using in-
dexes with cache
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Figure 21: Ratio of se-
quential scan time with
cache
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Figure 22: Ratio of ex-
ecution time using in-
dexes with cache

Since SegDiff compresses events into efficient parallelo-
gram representation and returns segments, which summa-
rize results, it has much faster response time. Figure 21 and
Figure 22 suggest that SegDiff is about 9 times faster than
Exh with sequential scan and is about 10 times faster using
indexes.

Ratio of execution time without caching Figure 23 and
Figure 24 show the performance gain when system cache
is not available: SegDiff is about 9 times faster than Exh
but is about 20 times faster than Exh using indexes. This
illustrates that large indexes hurt the performance when Exh
accumulates too many features.
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7. RELATED WORK
Compared to many existing work on similarity search in

time series database like [1, 12, 4] (readers can refer to [3]
for a comprehensive review) that require users to specify a
query series, the generic conditions for drop search are more
appropriate for users who do not have a precise specification
about shape and absolute magnitude of series they are look-
ing for, since numerous series satisfying the conditions can



have very different shapes and absolute magnitudes. For
similarity search, the studies like [1, 4, 7] map data into
boxes and use spatial access method like R*-tree index on
these boxes to speed up queries. Our framework uses a dif-
ferent idea of boxing: SegDiff compresses all features, which
otherwise have to be enumerated, into parallelograms and
stores necessary corner points to support search.

As commented in [5], piecewise linear approximation may
be the most frequently used representation of time series
data. It is utilized in a variety of settings such as clustering,
classification, characterizing movement patterns and shape-
search [6, 9, 13, 14]. But to our best knowledge, no existing
work uses such representation to construct parallelograms
for compressing signal features as we do. We invent a novel
usage of piecewise linear approximation.

There has been a growing interest in burst, novelty, or
change detection in time series. Zhu and Shasha [15] con-
sider online burst detection problem as discovering summa-
tion of time series in a sliding window with each known size
greater than each corresponding known threshold. They fo-
cus on improving detection time in an online monitoring
setting. Drops targeted by our framework are differences in
time series and time span of occurrences is not fixed. Al-
though features are collected by online procedures in order
to support timely update in database, our application con-
text is offline search. Ma and Perkins [8] employ support
vector regression to predict future values’ confidence inter-
val and a change occurs when it falls outside the interval.
Reznik et al. [10] study unforeseen change in sensor data
signaling malfunctioning or malicious altering. They utilize
a neural network prediction function to measure the dis-
crepancy between sensor outputs and the known model of
normality. It is clear that the domain-specific changes in
the above two studies are different from the change in ours.
Sharifzadeh et al. [11] use wavelet coefficients to capture
discontinuities of any degree in data and they consider the
notion of degree of change as the degree of the changing
derivatives at the change point. The definition of change in
our problem involves two points. The concept of disconti-
nuity does not apply; a legitimate drop or jump can happen
on smooth curves.

The most similar work to our search problem is [2], where
a timebox is used to specify constraints on time and values
of time series data. A constraint is like (12:00, 13:00, 1,
5) defining a box with an absolute time range from 12:00
to 13:00 and an absolute value range from 1 to 5. Any
series with a sub-series’ time stamps from 12:00 to 13:00 with
values within the range 1 to 5 is returned as query results.
In our problem, none of these two kinds of ranges is specified
in users’ search. This makes the problem much harder and
requires a careful treatment of feature compression: A single
search in our problem can be corresponding to a number of
timeboxes’ time ranges and value ranges, which are difficult
for users to specify if not impossible. The extension of a
timebox in [2] replaces the value range with an angle envelop
(φmin, φmax) where −π

2
≤ φmin ≤ π

2
and −π

2
≤ φmax ≤

π
2
. This new constraint requires slopes of all segments (by

connecting two consecutive points) whose time stamps are
in an absolute time range to be in the range (φmin, φmax).
This constraint is unable to capture a drop in our search
since a legitimate drop can involve segments with arbitrary
slopes in the middle.

8. CONCLUSION
In this paper, we study the problem of searching for drops

in sensor data. The problem is motivated by a real-world
situation where users have no idea about the shape and ab-
solute magnitude of data they are looking for but instead
they specify their search by certain threshold conditions on
relative change in values. The exhaustive search for this
problem consumes too much space, which considerably slows
down responses. Indexes in the exhaustive search are expen-
sive and cannot improve its performance. In the proposed
framework, we design a novel feature space that visualizes
target events and the search conditions, invent parallelo-
gram feature representation which is capable of substan-
tially compressing features needed for search, identify the
necessary corner points of a parallelogram to support the
mapping from search to standard database range queries,
and prove the guarantee that no true events are missed in
returned results and any false positive returned is within
a user-specified error tolerance. Extensive experimental re-
sults demonstrate the efficiency of the framework with re-
spect to feature size and search time.
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APPENDIX
Corner cases

tC
0

D

v

AC

BC

BD

AD
B

A

∆

∆

Figure 25: Boundary
conditions of case 2
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Figure 26: Boundary
conditions of case 3

Case 2 kCD ≥ 0 and kAB ≥ kCD. Figure 25 shows this
case.
Drop Feature point BC is the (degenerated) lower left bound-
ary. If any drop event occurs in the query region, the feature
associated with BC must be in the region. So it is sufficient
to record the feature associated with this point. The solid
circles in Figure 25 mark this point for each parallelogram.
Jump I As shown in Figure 25, feature segments (BC, AC)
and (AC, AD) are the upper left boundary. There are at
most five sub-cases for a query region to intersect a parallel-
ogram when AC denotes a jump, which is shown by top two
parallelograms in the figure: Feature point BC falls into the
region; AC falls into the region; AD falls into the region;
part of feature segment (BC, AC) is inside the region but
neither feature point BC nor feature point AC is in the re-
gion; part of (AC, AD) inside the region but neither AC
nor AD is in the region.
Jump II In the case of the second-to-last bottom parallel-
ogram where feature point AC denotes a drop and feature
point AD denotes a jump in Figure 25, feature segment
(AC, AD) is the upper left boundary. If a query region of
jump search intersects a parallelogram in this case, one of
the following two sub-cases must be true: feature point AD
is in the region; part of feature segment (AC, AD) is in the
region but feature point AD is not.
Features to be collected If ∆vBC − ε ≤ 0, the feature (∆tBC ,
∆vBC− ε) is collected; If ∆vAC + ε ≥ 0, the features (∆tBC ,
∆vBC + ε), (∆tAC , ∆vAC + ε) and (∆tAD, ∆vAD + ε) are
collected; if ∆vAC + ε < 0 and ∆vAD + ε > 0, (∆tAC ,
∆vAC + ε) and (∆tAD, ∆vAD + ε) are collected.
Case 3 kCD ≥ 0 and 0 < kAB < kCD. Figure 26 shows
this case. It is the same as case 2 except that AC and BD
exchange their positions in feature space.
Features to be collected The conditions and the correspond-
ing features from case 2 apply here with changing ∆tAC to
∆tBD and changing ∆vAC to ∆vBD.

The first three cases consider kCD ≥ 0. The next three

cases consider kCD < 0. The descriptions are similar. It
is sufficient to understand these three cases with the circle
notation convention that broken-line ones label upper left
boundary corner points for jump search and solid ones mark
lower left boundary corner points. Case 4 is corresponding
to case 1. Case 5 is corresponding to case 2. Case 6 is
corresponding to case 3.
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Figure 27: Boundary conditions of case 4

Case 4 kCD < 0 and kAB ≥ 0. Figure 27 shows this case.
Drop Feature segment (BC, BD) is the lower left boundary
for drop search.
Jump Feature segment (BC, AC) is the upper left boundary
for jump search.
Features to be collected If ∆vBD−ε ≤ 0, the features (∆tBC ,
∆vBC−ε) and (∆tBD, ∆vBD−ε) are collected; if ∆vAC+ε >
0, the features (∆tBC , ∆vBC +ε) and (∆tAC , ∆vAC +ε) are
collected.

∆
0

v

t

C

D

A

B

BC

AC
BD

AD

∆

Figure 28: Boundary
conditions of case 5
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Figure 29: Boundary
conditions of case 6

Case 5 kCD < 0 and kAB ≤ kCD. Figure 28 shows this
case.
Drop I When AC denotes a drop, feature segments (BC,
AC) and (AC, AD) are the lower left boundary.
Drop II When AC denotes a jump and AD denotes a drop,
feature segment (AC, AD) is the lower left boundary.
Jump Feature point BC is the (degenerated) upper left
boundary.
Features to be collected if ∆vAC−ε ≤ 0, the features (∆tBC ,
∆vBC − ε), (∆tAC , ∆vAC − ε) and (∆tAD, ∆vAD − ε) are
collected; if ∆vAC − ε > 0 and ∆vAD − ε ≤ 0, the features
(∆tAC , ∆vAC − ε) and (∆tAD, ∆vAD − ε) are collected; if
∆vBC + ε > 0, the feature (∆tBC , ∆vBC + ε) is collected.
Case 6 kCD < 0 and kCD < kAB < 0. As shown in Figure
29, this case is the same as case 5 except that AC and BD
exchange their positions.
Features to be collected The conditions and the correspond-
ing features from case 5 apply here with changing ∆tAC to
∆tBD and changing ∆vAC to ∆vBD.


