Sensor Networks for Undersea Seismic Experimentation (SNUSE)

PI: John Heidemann Co-Pls: Wei Ye, Jack Wills Information Sciences Institute University of Southern California

Why Undersea Sensor Networks?

- Vision: to reveal previously unobservable phenomena (Pottie)
- Goal: to expand senor-net technology to undersea applications
- Numerous potential applications
 - Oilfields: seismic imaging of reservoir
 - Environmental: pollution monitoring
 - Biology: fish or micro-organism tracking
 - Geology: undersea earthquake study
 - Military: undersea surveillance

Our Focus Application

- Seismic imaging for undersea oilfields
 - Collaborate with USC's ChevronTexaco Center for Interactive Smart Oilfield Technologies (CiSoft)
- Current technology
 - High cost
 - Perform rarely, about once every 1-3 years

Photo courtesy Institute of Petroleum

Our Approach: Undersea Sensor Nets

- Dense sensor networks are largely changing terrestrial sensing today
- Bring the concept to undersea environment
 - Enable low-cost, frequent operation
 - Exploit dense sensors, close observation

Current Undersea Networking

- Sparse networks, small number of nodes, longrange acoustic communication
 - Navy Spawar (Rice): Seaweb network ~20 nodes
 - Woods hole & MIT (Stojanovic)
 - Northeastern Univ. (Proakis)
 - Navy Postgraduate School (Xie)
- Cable networks: high speed, high cost
 - Neptune Network (Several Universities led by Univ. of Washington)
 - 3000km fiber-optic/power cables; \$250 million in 5 years
- Instead we focus on low-cost, wireless and dense networks

Can We Use Current Land Sensor Nets?

- Radios don't directly apply
 - Water significantly absorbs radio waves
 Mica2's Tx range is ~50cm in water (Sukhatme)
- Can we simply replace radio with acoustic communication?
 - Large propagation delay breaks/degrades many protocols
 - Propagating 200m needs 133ms(1500m/s)
- Need acoustic communication and new networking protocols

Acoustic Comm.: Challenges

- Acoustic channel is complex
 - High environmental noise and multi-path fading
 - Low bandwidth
 - Transmission curvature caused by uneven temperature distribution – shadow area
- Low-power transducers/hydrophones
- Existing work
 - Focus on reliability and bandwidth utilization (push to higher bit rates)
 - COTS acoustic modems are long range (1-90km), power hungry and costly

Acoustic Comm.: Our Approach

- Develop hardware for
 - short-range communication (50—500m)
 - Low-power operation (similar to Mica2 radio)
 - Low data rate (≤10kbps)
- Will take existing results from acoustic communication research
 - Modulation, coding, reliable transmission, etc.
- Short range largely avoids complex channel problems and is the key for low power hardware

Networking Protocols: Challenges

- Large and varying propagation delay
 - Sound is over 5 magnitude slower than radio
 - Sound speed changes with temperature, depth and salinity
- How does it affect existing protocols?
 - Time sync will break as they all ignores radio propagation delay
 - Fine-grained localization will break as they all depends on radio signal to sync node pairs
 - TDMA needs time sync, and contention MAC could have bad performance

Networking Protocols: Our Approach

- New time-sync and localization algorithms
 - Estimating the propagation delay is the key for high-precision time synchronization
 - Combine localization with time sync
- MAC protocols suitable for large propagation delay
 - Quantify performance loss with high delay
 - Re-design efficient MACs in high latency networks

Long-Term Energy Management

- Application only runs once a month
 - Nodes sleep for a month to conserve energy
 - Will investigate new energy management schemes for long sleep time
 - Inspired by work at Intel Portland
- Delay tolerant data transport
 - Large sensor data when application runs
 - 6MB in 5 minutes with 20kHz sampling rate
 - Low-bandwidth acoustic comm. (~10kbps)
 - Will investigate suitable DTN techniques
 - ©Delay tolerant networking research group (dtnrg.org)

Summary

- Project goal: expanding sensor-network technology to undersea applications
- Research directions
 - Hardware for low-power, short-range acoustic communications
 - Networking protocols and algorithms suitable for long propagation delay
 - Long term energy management
- Project website http://www.isi.edu/ilense/snuse