 Ns Tutorial 2002

Padmaparna Haldar (haldar@isi.edu)

Xuan Chen (xuanc@isi.edu)
Nov 21, 2002

Introduction

s 1989: REAL network simulator

= 1995: DARPA VINT project at LBL,
Xerox PARC, UCB, and USC/ISI

= Present. DARPA SAMAN project and
NSF CONSER project

= Collaboration with other researchers
Including CIRI

Ns Goals

"= Support networking research and education
= Protocol design, traffic studies, etc
= Protocol comparison

= Provide a collaborative environment

= Freely distributed, open source

= Share code, protocols, models, etc
= Allow easy comparison of similar protocols
= Increase confidence in results

= More people look at models in more situations
= Experts develop models

= Multiple levels of detail in one simulator

SAMAN and CONSER Projects

= SAMAN: build robust networks through
understanding the detection and prediction of
failure conditions

= ASIM, RAMP, and NEWS

= CONSER: extending ns and nam to support:

= Network research:
= New module integration: diffserv, direct diffusion
= Existing module improvement, new trace, etc

= Network education: nam and nam editor,
educational scripts repository, ns-edu mailing list,
ns tutorial, etc

Ns Status

= Periodical release (ns-2.1b9a, July 2002)
= —200K LOC In C++ and Otcl,
= —100 test suites and 100+ examples
=« 371 pages of ns manual
= Daily snapshot (with auto-validation)

= Stability validation
s http://www.isi.edu/nsnam/ns/ns-tests.htmi

= Platform support
= FreeBSD, Linux, Solaris, Windows and Mac

s User base
= > 1k institutes (50 countries), >10k users
= About 300 posts to ns-users@isi.edu every month

Ns functionalities

= Wired world
= Routing DV, LS, PIM-SM
= Transportation: TCP and UDP
= Traffic sources:web, ftp, telnet, cbr, stochastic
= Queuing disciplines:drop-tail, RED, FQ, SFQ, DRR
= QO0S: IntServ and Diffserv
= Emulation

s Wireless
= Ad hoc routing and mobile IP
= Directed diffusion, sensor-MAC

= Tracing, visualization, various utilities

“Ns” Components

s NS, the simulator itself

= Nam, the network animator

= Visualize ns (or other) output

= Nam editor: GUI interface to generate ns scripts
= Pre-processing:

= Traffic and topology generators
= Post-processing:

= Simple trace analysis, often in Awk, Perl, or Tcl

Ns Models

= Traffic models and applications:
« Web, FTP, telnet, constant-bit rate, real audio

= Transport protocols:

= unicast: TCP (Reno, Vegas, etc.), UDP

=« Multicast: SRM
= Routing and queueing:

= Wired routing, ad hoc rtg and directed diffusion

= gueueing protocols: RED, drop-tall, etc
= Physical media:

= Wired (point-to-point, LANs), wireless (multiple
propagation models), satellite

|nstallation

= Getting the pieces

« Tcl/TK 8.x (8.3.2 preferred):
http://resource.tcl.tk/resource/software/tcltk/

« Otcl and TclCL:
http://otcl-tclcl.sourceforge.net

= Ns-2 and nam-1:
http://www.isi.edu/nsnam/dist
= Other utilities
= http://www.isi.edu/nsnam/ns/ns-build.html
= Tcl-debug, GT-ITM, xgraph, ...

Help and Resources

= Ns and nam build guestions
= http://www.isi.edu/nsnam/ns/ns-build.html

= Ns mailing list: ns-users@isi.edu
= Ns manual and tutorial (in distribution)
s [CL: http://dev.scriptics.com/scripting

= Otcl tutorial (in distribution):
ftp.//ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.
html

10

Cautions

= We tried best to validate ns with
regression tests

= However: abstraction of the real world
IS necessary for a simulator

= You must justify the usage of this
simulator based on your research goals

11

Tutorial Schedule

= First session (Nov 21, 2002)
= Introduction
= Ns fundamentals

= Extending ns
= Lab

= Second session (Nov 22, 2002)

= Diffserv model (including lab)
= Wireless networks (including lab)

12

| Part |I: ns fundamentals

13

Ns-2, the Network Simulator

m A discrete event simulator
=« Simple model

= Focused on modeling network protocols
= Wired, wireless, satellite
= TCP, UDP, multicast, unicast
= Web, telnet, ftp
= Ad hoc routing, sensor networks
= Infrastructure: stats, tracing, error models, etc

Discrete Event Simulation

s Model world as events
= Simulator has list of events
= Process: take next one, run it, until done

= Each event happens in an instant of virtual
(simulated) time, but takes an arbitrary amount of
real time
= Ns uses simple model: single thread of
control => no locking or race conditions to
worry about (very easy)

15

Discrete Event Examples

Consider twonodes ~ SMple =1 A enqueues pkt on LAN
on an Ethernet: queuing — t=1.01, LAN dequeues pkt

‘ ‘ modei: and triggers B

t=1.0: A sends pkt to NIC
A’s NIC gtarts carrier sense

detailed t=1.005: A’s NIC concludes cs,
CSMA/CD

starts tx
model!:

t=1.006: B’s NIC begins reciving pkt
t=1.01: B’s NIC concludes pkt
B’s NIC passes pkt to app

16

Ns Architecture

= Object-oriented (C++, OTcl)

= Modular approach
= Fine-grained object composition

+ Reusability

+ Maintenance

- Performance (speed and memory)
- Careful planning of modularity

17

C++ and OTcl Separation

= “data” / control separation

« C++ for “data”:

= per packet processing, core of ns

= fast to run, detailed, complete control
= OTcl for control:

= Simulation scenario configurations

= Periodic or triggered action

= Manipulating existing C++ objects

= fast to write and change

+ running vs. writing speed
- Learning and debugging (two languages)

18

Otcl and C++: The Duality

e _\\‘] C++
I — TR e S
/’lll’_ﬁ/ | | | |
v C++/0Tcl 4 A
L | [__J split objects
v
otcl [e S - —

= OTcl (object variant of Tcl) and C++ share
class hierarchy

= TcICL i1s glue library that makes it easy to
share functions, variables, etc

19

Basic Tcl

variables:
set x 10
puts “x is $x”

functions and expressions:

sety [pow x 2]
set y [expr X*X]

control flow:
if {$x > 0} { return $x } else {
return [expr -$x] }
while { $x >0} {
puts $x
Incr x —1

procedures:

proc pow {x n} {
if {$n == 1} { return $x }
set part [pow X [expr $n-1]]
return [expr $x*$part]

}

Also lists, associative arrays,
etc.

=> can use areal
programming language to
build network topologies,
traffic models, etc.

20

Basic otcl

Class Person # subclass:
constructor: Class Kid -superclass Person
Person instproc init {age} { Kid instproc greet {} {
$self instvar age $self instvar age__
set age_ $age puts “$age_ years old kid:
) What's up, dude?”
method: }
Person instproc greet {} {
$self instvar age set a [new Person 45]
puts “$age years old: How Set b[new Kid 15]
are you doing?” $a greet
} $b greet

=> can easlly make variations of existing things (TCP, TCP/Reno)

21

C++ and OTcl Linkage

» Class Tcl: instance of OTcl interpreter
Tcl& tcl = Tcl::instance();
tcl.evalc(“puts stdout hello world”);
tcl.result() and tcl.error

= Class TclObject and TclClass
= Variable bindings
bind(“rtt_”, &t _rtt)
= Invoking command method in shadow class
$tcp advanceby 10

22

++ and Otcl linkage I

= Some important objects:
= NsObject: has recv() method
= Connector: has target() and drop()
= BiConnector: uptarget() & downtarget()

23

Using ns

Simulation
model

<

=1

24

Ns programming

= Create the event scheduler

= Turn on tracing

= Create network

= Setup routing

= Insert errors

= Create transport connection

= Create traffic

= Transmit application-level data

25

Creating Event Scheduler

s Create event scheduler
set ns [new Simulator]
s Schedule events

$ns at <time> <event>
= <event>: any legitimate ns/tcl commands

$ns at 5.0 “finish”

s Start scheduler
$ns run

26

Event Scheduler

= Event: at-event and packet

= List scheduler: default
= Heap and calendar queue scheduler

s Real-time scheduler
= Synchronize with real-time
= Network emulation

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 “$self halt”

27

Discrete Event Scheduler

*

handler -> handle()

- + _____________________________
insert t|me uid_, next_, handler_:

28

Hello World - Interactive Mode

| nter active mode:

swal | ow 71% ns

% set ns [new Sinul ator]
03

% $ns at 1 “puts \“Hello
Vorldh\””

1

% $ns at 1.5 “exit”
2

% $ns run

Hell o Worl d!
swal | ow 72%

Batch mode:

si npl e. t cl

set ns [new Sinul at or]

$ns at 1 “puts \“Hello
Vorldih\””

$ns at 1.5 “exit”
$ns run

swal | ow 74% ns
si npl e. tcl

Hel |l o Wor | d!
swal | ow 75%

29

Tracing and Monitoring |

= Packet tracing:

= On all links: $ns trace-all [open out.tr w]
= On one specific link: $ns trace-queue $n0 $n1$tr

<Event > <tine> <fronr <to> <pkt> <size> -- <fid> <src> <dst> <seq> <attr>
+102cbr 210 ------- 00.03.100
- 102 cbr 210 ------- 00.03.100
r 1.00234 0 2 cbr 210 ------- 00.03.100

= We have new trace format
= Event tracing (support TCP right now)

= Record “event” In trace file: $ns eventtrace-all

E 2.267203 0 4 TCP slow start 0 210 1
30

Tracing and Monitoring |1

= Queue monitor
set gmon [$ns monitor-queue $n0 $nl $q_f $sample_interval]
= Get statistics for a queue
$gmon set pdrops_

= Record to trace file as an optional
29. 000000000000142 0 1 0.0 0.0 4 4 0 1160 1160 O

= Flow monitor

set fmon [$ns_ makeflowmon Fid]
$ns_ attach-fmon $slink $fmon
$fmon set pdrops

31

Tracing and Monitoring 11

*= Visualize trace in nam
$ns namtrace-all [open test.nam w]
$ns namtrace-queue $n0 $nl

= Variable tracing in nam

Agent/TCP set nam_tracevar_ true
$tcp tracevar srtt_
$tcp tracevar cwnd_

= Monitor agent variables in nam
$ns add-agent-trace $tcp $tcp
$ns nonitor-agent-trace $tcp
$srnD tracevar cwnd_

$ns del ete-agent-trace $tcp

32

Creating Network

‘I Nodes
set nO [$ns node]
set nl1 [$ns node]

= Links and queuing

$ns <link_type> $n0 $nl1 <bandwidth>
<delay> <queue_type=>
» <link_type>: duplex-link, simplex-link

= <queue type>: DropTail, RED, CBQ, FQ, SFQ,
DRR, diffserv RED gueues

33

Creating Network: LAN

ns make-lan <node_list> <bandwidth>
<delay> <lIl type> <ifqg_type>
<mac_type> <channel type>

<Il type>: LL

<ifg_type>: Queue/DropTall,
<mac_type>: MAC/802_3
<channel_type>: Channel

34

Setup Routing

= Unicast
$ns rtproto <type>
<type>: Static, Session, DV, cost, multi-path

= Multicast
$ns multicast (right after [new Simulator])

$ns mrtproto <type>
<type>: CtrMcast, DM, ST, BST

= Other types of routing supported: source routing,
hierarchical routing

35

Inserting Errors

= Creating Error Module
set loss_module [new ErrorModel]
$loss module set rate 0.01
$loss_module unit pkt
$loss_module ranvar [new RandomVariable/Uniform]
$loss_module drop-target [new Agent/Null]

= Inserting Error Module
$ns lossmodel $loss module $n0 $nl

36

Network Dynamics

s Link failures

= Hooks in routing module to reflect routing
changes

s Four models

$ns rtnodel Trace <config file> $n0 $nl

$ns rtnodel Exponential {<parans>} $n0 $nl
$ns rtnodel Determnistic {<parans>} $n0 $nl
$ns rtnodel-at <tine> up| down $n0 $nl

= Parameter list

[<start>] <up_interval> <down_interval > [<finish>]

37

= UDP
set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n0 Sudp
$ns attach-agent $nl $null
$ns connect $udp $null

Creating Connection and Traffic

= CBR

set src [new
Application/Traffic/CBR]

= Exponential or Pareto

on-off

set src [new
Application/Traffic/Exponential]

set src [new
Application/Traffic/Pareto]

38

s [CP
set tcp [new Agent/TCP]

set tcpsink [new
Agent/TCPSInk]

$ns attach-agent $n0 $tcp

$ns attach-agent $nl
$tcpsink

$ns connect $tcp $tepsink

Creating Connection and Traffic |1

m FTP

set ftp [new Application/FTP]
$ftp attach-agent $tcp

= Telnet

set telnet [new
Application/Telnet]

$telnet attach-agent $tcp

39

Creating Traffic: Trace Driven

s [race driven

set tfile [new Tracefile]
$tfile filename <file>

set src [new Application/Traffic/Trace]

$src attach-tracefile $tfile
<file>:

« Binary format (native!)
= inter-packet time (msec) and packet size (byte)

40

Application-Level Simulation

= Features
= Build on top of existing transport protocol
= Transmit user data, e.g., HTTP header

= Two different solutions
= TCP: Application/TcpApp
= UDP: Agent/Message

41

Compare to Real World

= More abstract (much simpler):
= No addresses, just global variables

= Connect them rather than name
lookup/bind/listen/accept

= Easy to change implementation
Set tsrc2 [new agent/TCP/Newreno]
Set tsrc3 [new agent/TCP/Vegas]

42

ummary: Generic Script Structure

set ns [new Si nul at or]

#
#

H HF HF H H H BT H

[Turn on tracing]
Creat e topol ogy

Set up packet loss, |ink dynam cs
Create routing agents
Cr eat e:

- mul ticast groups

- protocol agents

- application and/or setup traffic sources
Post - processi ng procs
Start sinulation

43

ns—=>nam Interface

= Color

= Node manipulation
= Link manipulation
= Topology layout

= Protocol state

= Misc

44

nam Interface: Color

= Color mapping
$ns col or 40 red
$ns col or 41 bl ue
$ns col or 42 chocol ate

= Color « flow id association
$tcpO set fid 40 ;# red packets
$tcpl set fid 41 ;# blue packets

45

nam Interface: Nodes

s Color

$node col or red

= Shape (can’t be changed after sim starts)

$node shape box ;# circle, box, hexagon

= Marks (concentric “shapes”)
$ns at 1.0 “$n0 add-mark n0O bl ue box”
$ns at 2.0 “$n0 del ete-mark n0D”

= Label (single string)
$ns at 1.1 “$n0 label \"web cache O\""

46

nam Interfaces: Links

s Color

$ns dupl ex-1ink-op $n0 $nl col or "green"

= Label

$ns dupl ex-1ink-op $n0 $nl | abel "abced"

= Dynamics (automatically handled)
$ns rtnmodel Deterministic {2.0 0.9 0.1} $n0 $n1l

= Asymmetric links not allowed

47

nam Interface: Topo Layout

= “Manual” layout: specify everything

$ns dupl ex-1ink-op $n(0) $n(1l) orient right
$ns dupl ex-link-op $n(1) $n(2) orient right
$ns dupl ex-l1ink-op $n(2) $n(3) orient right
$ns dupl ex-1ink-op $n(3) $n(4) orient 60deg

= If anything missing - automatic
layout

48

nam Interface: Misc

Annotation

= Add textual explanation to your
simulation

$ns at 3.5 "$ns trace-annotate \“packet
drop\"*

Set animation rate

$ns at 0.0 "$ns set-ani mati on-rate
0.1ns"

49

Nam Demo

= tcp.tel: simple nam animation

= red.tcl:
= RED trace function
= Xgraph: queue size plot
= pudp.tcl:
= Queue monitoring
= Agent variable tracing and monitoring
= Nam graph: TCP sequence plot

50

