

Wireless world in NS

Padma Haldar USC/ISI

Outline

- Introduction
 - Wireless basics
 - Wireless internals
- Ad hoc routing
- o Mobile IP
- Satellite networking
- o Directed diffusion

2

Contributions to mobility in ns

- Original mobility model in ns contributed by CMU's Monarch group
- Other major contributions from UCB, Sun microsystems, univ of cincinnati, ISI etc
- Other contributed models (not integrated) in wireless ns includes Blueware, BlueHoc, Mobiwan, GPRS, CIMS etc

Wireless model

- Mobilenode at core of mobility model
- Mobilenodes can move in a given topology, receive/transmit signals from/to wireless channels
- Wireless network stack consists of LL, ARP, MAC, IFQ etc
- Allows simulations of multi-hop ad hoc networks, wireless LANs, sensor networks etc

4

Wireless Example

-for ad hoc routing

- Scenario
 - 3 mobile nodes
 - moving within 670mX670m flat topology
 - using DSDV ad hoc routing protocol
 - Random Waypoint mobility model
 - TCP and CBR traffic
- ns-2/tcl/ex/wireless-democsci694.tcl

ISI

An Example - Step 1

Define Global Variables

create simulator

set ns [new Simulator]

 $\mbox{\#}$ create a flat topology in a 670m x 670m area

set topo [new Topography]
\$topo load_flatgrid 670 670

An Example - Step 2

```
# Define standard ns/nam trace
# ns trace
set tracefd [open demo.tr w]
$ns trace-all $tracefd
# nam trace
set namtrace [open demo.nam w]
$ns namtrace-all-wireless $namtrace 670 670
```


(General Operations Director)

- Stores smallest number of hops from one node to another
- Optimal case to compare routing protocol performance
- Automatically generated by scenario file
- o set god [create-god <no of mnodes>]
- o \$god set-dist <from> <to>
 <#hops>

Example -Step 3

Create God set god [create-god 3] \$ns at 900.00 "\$god setdist 2 3 1"

151

An Example – Step 4

Define how a mobile node is configured \$ns node-config \ -adhocRouting DSDV \ -11Type LL \

-macType Mac/802_11 \
-ifqLen 50 \

-ifqType Queue/DropTail/PriQueue \

-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \

-phyType Phy/WirelessPhy \
-channelType Channel/WirelessChannel \

-topoInstance \$topo

-agentTrace ON \

-routerTrace OFF \
-macTrace OFF

An Example - Step 5

```
# Next create a mobile node, attach it to the
channel
set node(0) [$ns node]
# disable random motion
$node(0) random-motion 0

# Use "for" loop to create 3 nodes:
for {set i < 0} {$i < 3} {incr i} {
    set node($i) [$ns node]
    $node($i) random-motion 0
}</pre>
```


Mobilenode Movement

- Node position defined in a 3-D model
- However z axis not used

\$node set X_ <x1>
\$node set Y_ <y1>

<speed>

o Node movement may be logged

Scenario Generator: Movement

o Mobile Movement Generator

setdest -n <num_of_nodes> -p pausetime -s
 <maxxpeed> -t <simtime> -x <maxx> -y
 <maxv>

Source: ns-2/indep-utils/cmu-scengen/setdest/

o Random movement

- \$node random-motion 1
- \$node start

13

A Movement File

. .

Scenario Generator: Traffic

- o Generating traffic pattern files
 - CBR traffic

ns cbrgen.tc1 [-type cbr/tcp] [-nn nodes]
 [-seed seed] [-mc connections] [-rate
 rate]

- TCP traffic
- ns tcpgen.tcl [-nn nodes] [-seed seed]
- o Source: ns-2/indep-utils/cmu-scengen/

15

A Traffic Scenario

set udp_(0) [new Agent/UDP]
sns_attach-agent \$node_(0) \$udp_(0)
set null_(0) [new Agent/Null]
\$ns_attach-agent \$node_(2) \$null_(0)
\$et chr_(0) [new Agentlation/Traffic/CBR]
\$cbr_(0) set packetSize_512
\$cbr_(0) set interval_4.0
\$cbr_(0) set random_1
\$cbr_(0) set maxpkts_10000
\$cbr_(0) attach-agent \$udp_(0)
\$ns_connect \$udp_(0) \$null_(0)
\$ns_at 127.93667922166023 "\$cbr_(0) start"

16

An Example - Step 6

Define node movement model
source <movement-scenario-files>

Define traffic model
source <traffic-scenario-files>

ISI

An Example - Step 7

nam Visualization

O Replace

\$ns namtrace-all \$fd

with

\$ns namtrace-all-wireless \$fd

At the end of simulation, do

\$ns nam-end-wireless [\$ns now]

Mobile Node: Components

- o Classifiers
 - defaulttarget_ points to routing agent object
 - · 255 is the port id assigned for rtagent_
- o Routing agent
 - May be ad hoc routing protocol like AODV, DSDV or directed diffusion

25

Mobile Node: Components

- Link Layer
 - Same as LAN, but with a separate ARP module
 - Sends queries to ARP
- o ARP
 - Resolves IP address to hardware (MAC) address
 - Broadcasts ARP query
- o Interface queue
 - Gives priority to routing protocol packets
 - · Has packet filtering capacity

26

Mobile Node: Components

- o MAC
 - 802.11
 - o IEEE RTS/CTS/DATA/ACK for unicast
 - Sends DATA directly for broadcast
 - SMAC (work in progress)
- Network interface (PHY)
 - Used by mobilenode to access channel
 - Stamps outgoing pkts with meta-data
 - Interface with radio/antenna models

27

Mobile Node: Components

- Radio Propagation Model
 - Friss-space model attenuation at near distance
 - Two-ray ground reflection model for far distance
 - Shadowing model -probabilistic
- Antenna
 - · Omni-directional, unity-gain

28

Wireless Channel

- Duplicate packets to all mobile nodes attached to the channel except the sender
- It is the receiver's responsibility to decide if it will accept the packet
 - Collision is handled at individual receiver
 - O(N²) messages → grid keeper, reference-copying etc

Mobile Node: Misc.

- Energy consumption model for sensor networks
- Visualization of node movement, reachability, and energy
- Validation test suites

21

Wireless Trace Support

- o Original cmu trace format
- A separate wireless trace format developed later at ISI
- Current ongoing effort to have ONE format to combine all wired and wireless formats

32

Ad Hoc Routing

- Four routing protocols currently supported:
 - DSDV
 - Contributed by CMU
 - DSR
 - Contributed by CMU; recently updated
 - AODV
 - Recently updated version from univ. of cincinnati;
 - TORA
 - Contributed by CMU
- Examples under tcl/test/test-suite-wireless-{ lan-newnode.tcl, lan-aodv.tcl, lantora.tcl }

33

A Brief on MobileIP Support

- o Developed by Sun
 - Require a different Node structure than MobileNode
 - Co-exists with wired world in ns
- o Wired-cum-wireless extension
 - Base-stations, support hier-rtg
- Standard MobileIP
 - Home Agent, Foreign Agent, MobileHosts
- o Example

Under tc1/test/test-suite-wireless-lannewnode.tc1 (tests: DSDV-wired-cum-wireless and DSDV-wireless-mip)

34

A Brief on Satellite Networking

- Developed by Tom Henderson (UCB)
- Supported models
 - Geostationary satellites: bent-pipe and processing-payload
 - Low-Earth-Orbit satellites
- o Example: tcl/ex/sat-*.tcl

35

A Brief on Directed Diffusion

- Developed by SCADDS group at USC/ISI
- o Diffusion model in ns consists of
 - A core diffusion layer
 - A library of APIs for diffusion applications
 - Add-on filters (for gradient routing, logging, tagging, srcrtg, GEAR etc)
- o Much in development
- Source code in ~ns/diffusion3
- Examples under tcl/ex/diffusion3 and test/test-suite-diffusion3.tcl

SMAC

- SMAC MAC designed for sensor networks
- o Similar RTS/CTS/DATA/ACK like 802.11
- o Additional sleep-wakeup cycles
- Reduce energy consumptions during idle phases
- o Much in development
- o Examples under tcl/test/test-suite-smac.tcl

Summary

- Wireless support in ns continuously evolving
- Many other contributed models (not integrated into ns distribution) include:
 - Mobiwan, GPRS, Bluehoc and blueware, CIMS etc
 - Available from ns' contributed code page at http://www.isi.edu/nsnam/ns/nscontributed.html