

ACI-MD Analyse Globalisée des Images Radiologiques

Data composition patterns in service-based workflows

Johan Montagnat, I3S team, CNRS

Tristan Glatard, I3S team CNRS/INRIA Asclepios

Diane Lingrand, I3S team, CNRS

Data parallel applications

- Many scientific applications
- Well suited for exploiting distributed infrastructures
- Workflow engines ease to transparently exploit parallelism

Data composition patterns in workflows

- Data-intensive workflows description
- Expressiveness problem. Trade-off between:
 - Compactness / representation simplicity
 - Flexibility

Problem

Define a clear semantics for data composition inside a workflow

Job submission vocabulary

Task-based approach

Global computing

- Each job submitted is a task
- Requires a job description language
 - To define: I/O data, executable, command line...
- Middlewares examples: GLOBUS, LCG2, gLite... batch computing

Service-based approach

Meta computing

- Each job is a service
- Requires a standard invocation interface (Web Service, GridRPC)
 - Input/Ouput data are parameters for the service
 - The service is a 'black box' hidding the submission infrastructure
 - Very flexible
- Example middlewares: DIET, Ninf, Netsolve...

Workflow managers

Workflow description

- Business workflows (e.g. BPEL)
 - Control-centric
- Scientific workflows (e.g. Scufl)
 - Data-centric

Workflow execution

Task-based workflows (e.g. DAGMan)

CS friendly

- Explicit mention of data dependencies
- Complex workflow, simple optimisation
- Service-based workflows (e.g. Taverna, Triana, Kepler, MOTEUR)
 - Independent expression of processors and input data-sets
 - Simple workfkows, complex optimisation

← user friendly

Data composition strategies

Data composition patterns : data intensive applications

$$\mathbf{A} \oplus \mathbf{B} = \{A_1 \oplus B_1, A_2 \oplus B_2, \ldots\}$$

$$\mathbf{A} \otimes \mathbf{B} = \{ A_1 \otimes B_1, A_1 \otimes B_2 \dots A_1 \otimes B_m, A_2 \otimes B_1 \dots A_2 \otimes B_m \dots A_n \otimes B_1 \dots A_n \otimes B_m \}$$

Combinatorial data composition

Service-based approach versus task-based approach

Explicit priority (parenthesized expression)

$$\mathbf{B} \oplus (\mathbf{A} \otimes \mathbf{P}) = \left\{ \begin{array}{ll} B_0 \oplus (A_0 \otimes P_0), & B_1 \oplus (A_1 \otimes P_0), \\ B_0 \oplus (A_0 \otimes P_1), & B_1 \oplus (A_1 \otimes P_1), \\ B_0 \oplus (A_0 \otimes P_2), & B_1 \oplus (A_1 \otimes P_2) \end{array} \right\}$$

Data composition in different languages

Taverna

- One-to-one (dot product) and all-to-all (cross product) operators included in Scufl
- One-to-one composition results in processing the min(#A, #B) of compositions
- Based on sequential order

Kepler

- One-to-one composition
- Implemented a new actor for all-to-all semantics with the PN director (require work-arounds)

Triana

One-to-one composition

MOTEUR workflow manager

Efficient workflow enactment

- Interfaced to a grid infrastructure (distributed computing)
- Transparently exploits application (data+service+workflow) parallelism
- Special emphasis on data-parallelism

Includes data composition patterns

- Use the Scufl description language
- Implements the one-to-one composition semantics described in this paper

Where?

– http://www.i3s.unice.fr/~glatard

How?

CeCILL (French-GPL) license

Sequential order semantic

Different semantics?

Sequential order semantic

 $\mathbf{B} \oplus_{\mathrm{Taverna}} (\mathbf{A} \otimes \mathbf{P}) = \{ B_0 \oplus (A_0 \otimes P_0), B_1 \oplus (A_1 \otimes P_0) \}$

One-to-one composition semantic?

 One-to-one composition makes sense if data sets are correlated

$$\mathbf{B} \oplus (\mathbf{A} \otimes \mathbf{P}) = \left\{ \begin{array}{ll} B_0 \oplus (A_0 \otimes P_0), & B_1 \oplus (A_1 \otimes P_0), \\ B_0 \oplus (A_0 \otimes P_1), & B_1 \oplus (A_1 \otimes P_1), \\ B_0 \oplus (A_0 \otimes P_2), & B_1 \oplus (A_1 \otimes P_2) \end{array} \right\}$$

if A and B are correlated (application dependent, user defined)

- Sequential order may be relevant (but not reliable in case of a dataand service-parallel workflow enactor)
- Our hypothesis: explicit description of correlated data sets, or sequential order (default behavior)
- No unique answer: depends on application expressiveness needs

Explicit correlation through groups

The user defines correlation groups:

G = {
$$(A_0, B_0), (A_1, B_1), ...$$
}

No relation between A_i and P_k

Service S₁:

— ⊕ composition: A_i and B_i combined iff i=j

Service S₄:

- $(A_i \oplus B_i) \otimes P_k$ and $(A_i \oplus B_i) \otimes Q_m$ combined iff i=j
- $-((A_i \oplus B_i) \otimes P_k) \oplus ((A_i \oplus B_i) \otimes Q_m)$ for all k and m

$$((\mathbf{A} \oplus \mathbf{B}) \otimes \mathbf{P}) \oplus ((\mathbf{A} \oplus \mathbf{B}) \otimes \mathbf{Q})$$

 Implement the semantics for any workflow graph 1. Build the workflow directed graph

Algorithm

- 1. Build the workflow directed graph
- 2. Add data groups to this graph

Algorithm

 \mathbf{A}_{\parallel}

- 1. Build the workflow directed graph
- 2. Add data groups to this graph
- 3. Initialize the directed acyclic data graph
 - 1. Create root nodes from groups

 \mathbf{A}_{\parallel}

B

- 1. Build the workflow directed graph
- 2. Add data groups to this graph
- Initialize the directed acyclic data graph
 - 1. Create root nodes from groups
 - 2. Root nodes for orphan data

 P_0

Algorithm

 \mathbf{A}_{\parallel}

- 1. Build the workflow directed graph
- 2. Add data groups to this graph
- 3. Initialize the directed acyclic data graph
 - 1. Create root nodes from groups
 - 2. Root nodes for orphan data
- 4. Start workflow execution

Algorithm

 \mathbf{A}_{\parallel}

- 1. Build the workflow directed graph
- 2. Add data groups to this graph
- 3. Initialize the directed acyclic data graph
 - 1. Create root nodes from groups
 - 2. Root nodes for orphan data
- 4. Start workflow execution
- 5. At each service invokation
 - 1. Update data graph

Algorithm

 \mathbf{A}_{\parallel}

- 1. Build the workflow directed graph
- 2. Add data groups to this graph
- 3. Initialize the directed acyclic data graph
 - 1. Create root nodes from groups
 - 2. Root nodes for orphan data
- 4. Start workflow execution
- 5. At each service invokation
 - 1. Update data graph

Algorithm

 \mathbf{A}_{\parallel}

- 1. Build the workflow directed graph
- 2. Add data groups to this graph
- 3. Initialize the directed acyclic data graph
 - 1. Create root nodes from groups
 - 2. Root nodes for orphan data
- 4. Start workflow execution
- 5. At each service invokation
 - 1. Update data graph
 - 2. Loop until no more data available

 Implicit grouping of orphan input data sets composed by a one-to-one operator

A service may produce more (or less) data than it consumes

But this breaks the data parallelism assumption!

Bronze Standard application example

Service-based workflow enactors

- User friendly approach
- Well suited for scientific, data-intensive applications

Data composition patterns

- Very compact framework
- Powerful expressiveness
- Non-trivial operators semantics

Perspectives

- Data parallelism with data fragments
- More composition patterns (all-to-all-but-one...)
- Different semantics for one-to-one composition (one-to-one-inclusive, one-to-one-strict...)

MOTEUR code and tutorial

http://www.i3s.unice.fr/~glatard

Publications

- Overview: Tristan Glatard et al, I3S tech report #06-07, HPDC'06
 http://www.i3s.unice.fr/%7Emh/RR/2006/RR-06.07-T.GLATARD.pdf
- Overview, performances: Tristan Glatard et al. HPDC'06 poster http://www.i3s.unice.fr/~johan/publis/HPDC06.pdf
- Software architecture: Tristan Glatard et al. GELA'06 (HPDC)
 http://www.i3s.unice.fr/~johan/publis/GELA06.pdf
- Performances: Tristan Glatard et al. EXPGRID'06 (HPDC)
 http://www.i3s.unice.fr/~johan/publis/EXPGRID06.pdf
- Medical imaging: Tristan Glatard et al. HealthGrid'06
 http://www.i3s.unice.fr/~johan/publis/HealthGrid06b.pdf

AGIR Shortcomings of the task-based approach

- The task-based approach mixes processing description and target data:
 - Static description of tasks
 - Usually single execution per Job Description File
 - Why are multiple-data jobs submitter so rare?
 - Tedious invocation process: first write a Job Description File

- Every piece of data is a file
 - Specifying input parameters (int, string, ...) to a job is not possible
- But legacy code execution is straight-forward
 - Just write the command line

Loops (not a DAG)

- Only acyclic graphs are possible in the task-based approach
- Description is static
- Example: optimization loop could not be described

Synchronization barrier

- Data synchronization are difficult to describe
 - Example: computing an average input

Sequential order semantic

$$\mathbf{A} \oplus_{\text{Taverna}} (\mathbf{B} \otimes \mathbf{C}) = \left\{ A_0 \oplus (B_0 \otimes C_0), A_1 \oplus (B_1 \otimes C_0) \right\}$$
$$(\mathbf{A} \oplus_{\text{Taverna}} \mathbf{B}) \otimes \mathbf{C} = \left\{ \forall i, (A_0 \oplus B_0) \otimes C_i, \forall i, (A_1 \oplus B_1) \otimes C_i \right\}$$
$$\mathbf{B} \oplus_{\text{Taverna}} (\mathbf{A} \otimes \mathbf{P}) = \left\{ B_0 \oplus (A_0 \otimes P_0), B_1 \oplus (A_1 \otimes P_0) \right\}$$