High-level Composition of QoS-aware Grid Workflows: An Approach that
Considers Location Affinity *

Ivona Brandic, Sabri Pllana and Siegfried Benkner
Institute of Scientific Computing
University of Vienna
Nordbergstralle 15, 1090 Vienna, Austria
{brandic,pllana,sigi } @par.univie.ac.at

Abstract

At a high level of abstraction Grid applications are com-
monly specified based on the workflow paradigm. We con-
sider that for the wide acceptance of Grid technology it is
relevant that the user has the possibility to express require-
ments on Quality of Service (QoS) at workflow specification
time. However, most of the existing workflow languages lack
constructs for QoS specification, or provide only limited
QoS support. In this paper we present an approach for high
level workflow specification that considers a comprehensive
set of QoS requirements. Besides performance related QoS,
it includes economical, legal and security aspects. For in-
stance, for security or legal reasons the user may express
the location affinity regarding Grid resources on which cer-
tain workflow tasks may be executed. Our QoS-aware work-
flow system provides support for the whole workflow life cy-
cle from specification to execution. Workflow is specified
graphically, in an intuitive manner, based on a standard vi-
sual modeling language. We illustrate our approach with a
real-world workflow for maxillo facial surgery simulation.

1 Introduction

The emergence of Grid technology is strongly affecting
the way in which the information processing tasks are per-
formed. Grid users may specify the tasks that should be
performed at several levels of abstraction that directly re-
flect their role within an organization. At the top level of
abstraction the user specifies the tasks that should be per-
formed on the Grid as workflow. This approach has the ad-
vantage that the user can map the problem from his/her do-
main of interest to a workflow in a straightforward manner.

*The work described in this paper was supported by the Austrian Sci-
ence Fund as part of Aurora Project under contract SFBF1102 and by the
European Union's GEMSS Project under contract |ST 2001-37153.

As a consequence, the user does not have to be an expert
of Grid technology in order to specify the job that should
be performed. Therefore, the workflow paradigm is con-
sidered to be very relevant for the wide acceptance of Grid
technology.

Currently a significant research effort is invested in
the development of workflow languages for Grid environ-
ments [25]. However, most of the existing workflows are
specified in textual form, or based on a self-defined graph-
ical notation. Moreover, there is a lack of adequate tool
support for workflow specification, and workflow specifi-
cation tools are usually not well integrated with the Grid
environment. Furthermore, many workflow languages pro-
vide no language constructs for QoS specification, or pro-
vide only limited QoS support (for instance, only for perfor-
mance and economical related QoS). We believe that while
performance aspect is of paramount importance for time
critical applications, the wide acceptance of Grid technol-
ogy strongly depends on security and legal aspects. We
have experienced that many potential users from industry
hesitate to use Grid technology even if the performance and
economical benefits are clear because of security and legal
concerns.

There is a large number of application domains for Grid
workflows, such as life sciences (e.g. medical simula-
tion services) and engineering (e.g. vehicle development
support), that demand a guarantee that workflow activi-
ties are performed within the specified time, cost, secu-
rity and legal constraints. Therefore, we are developing
an XML based language for QoS-aware Grid workflows
(QoWL), by extending Business Process Execution Lan-
guage (BPEL) [1] with language constructs for specification
of QoS constraints [6]. A distinctive feature of QoWL lan-
guage is the ability to account for user’s preferences regard-
ing the execution location affinity for activities with specific
security and legal constraints. The concept of location affin-
ity, introduced in this paper, conforms to the idea of Virtual

Organizations [11]. In order to streamline the process of
workflow specification, we have extended our graphical ed-
itor Teuta [20] for QoWL. The user specifies with Teuta the
workflow graphically by using the Unified Modeling Lan-
guage (UML) [17]. From this representation Teuta automat-
ically generates the corresponding QoWL representation,
which serves as input to QoS-aware Grid Workflow Engine
(QWE). QWE performs necessary steps for the QoS-aware
workflow negotiation and execution [7]. A prerequisite for
the QoS-aware workflow execution are QoS-aware services
able to give QoS guarantees. A QoS-aware service enables
clients to inquire about its QoS properties. This kind of sup-
port is provided by Vienna Grid Environment (VGE) ser-
vices [4]. VGE has been utilized within the European Com-
mission funded GEMSS project which developed a testbed
for six medical simulation and image reconstruction Grid
services [13]. We evaluate our approach by specifying a
QoS-aware Grid workflow for maxillo facial surgery simu-
lation.

The main contributions of this paper include: (1) de-
velopment of the language support for specification of se-
curity and legal QoS constraints; (2) definition of a UML
based Domain Specific Language (DSL) for QoS-aware
Grid workflows; and (3) extension of Teuta for QoWL, and
integration of Teuta with QWE.

The rest of this paper is organized as follows. Section 2
describes our approach for graphical specification of QoS-
aware Grid workflows. Our implementation is outlined in
Section 3. Section 4 demonstrates the application of our
approach by modeling a maxillo facial surgery simulation
workflow. We compare and contrast the work presented in
this paper with the related work in Section 5. Section 6
presents our conclusions and describes the future work.

2 High-level
Workflows

Specification of QoS-aware

In this section we first briefly describe the QoWL lan-
guage, which is an XML based language for QoS-aware
Grid workflows. Thereafter, we present a UML-based
graphical representation of QoWL.

2.1 Quality of Service Aware Grid Work-
flow Language (QoWL)

QoWL comprises a subset of Business Process Execu-
tion Language (BPEL) [1] and a set of QoS extensions that
is used for specification of the QoS requirements of Grid
workflows. The elements of our BPEL subset include: Pro-
cess, Invoke, Copy, Sequence, Flow, Receive, Reply, Switch,
and While. BPEL elements are extended by the QoS exten-
sions necessary for the specification of QoS before the QoS

negotiation and for the expression of QoS after the negotia-
tion.

any element of our

qowl-element represents
BPEL subset

<gowl-element name=‘“‘activityName* portType=“...* wsdl="*...“ ...>
<gos-constraints regDescvar=*...“>
<gos-constraint name=“beginTime* value=*...*“ weight="._.“ />
<gos-constraint name=“endTime* value=*___*“ weight="*___.*“ />

<gos-constraint name=“price* value=* “ weight=*“...“ />
<gos-constraint name=*“geograficAffinity* value="“___* />

QoS extension of
a BPEL element

Figure 1. The structure of a QoWL element

</qos-constraints>

</qowl-element>

Figure 1 depicts the structure of a QoWL element.
A QoWL element is defined as an extended BPEL ele-
ment with a set of QoS constraints. The attributes of
the gow - el erent, such as name and port Type,
are used as defined in the BPEL specification [1]. The
<gos- constrai nt s> element specifies the QoS of a
specific workflow element. The attribute r eqDescVar
defines the variable which specifies the meta data. Based
on the specified meta data (e.g. image resolution) a QoS-
aware service can predict the execution time of the ser-
vice for a specific request. Each <qos- constrai nt s>
element may contain several <qos- constrai nt > ele-
ments. Each <qos- constrai nt > element specifies a
QoS constraint as a tuple (name, value, weight).

Commonly used QoS constraints of QoWL for Grid
workflows include: (1) begi nTi ne, which describes
the earliest possible begin time of the activity execution;
(2) endTi ne, which represents the latest possible fin-
ish time of the activity execution; and (3) pri ce, which
specifies the maximum price for the activity execution
(see Figure 1). Additionally, the user may express pref-
erences regarding the location of Grid resources where
an activity should be executed, by specifying the Grid
site, organizational, or geographical affinity. For instance,
the QoS constraint geogr aphi cAf fi ni ty with value
my Count r yl D specifies that the activity should be ex-
ecuted on Grid resources that are geographically located
within the specified country.

The interested reader may find a more detailed descrip-
tion of QoWL in [6, 7].

2.1.1 Specification of Location Affinity with QoWL

Most of the existing related work focuses on performance
(i.e. activity execution time) and economical (i.e. activity
price) aspects of QoS. We believe that while performance is
of paramount importance for time critical applications, the

wide acceptance of Grid technology strongly depends on se-
curity and legal aspects. We have experienced that many po-
tential users from industry hesitate to use Grid technology
even if the performance and economical benefits are clear
because of security and legal concerns [14]. Therefore, we
consider that it would be useful if the user has the possibil-
ity to restrict the location of Grid resources on which certain
activities may be executed. For instance, for security or le-
gal reasons the user may specify that an activity should be
executed only on Grid resources that belong to user’s orga-
nization.

Workflow

<qowl-element name="A3"...> <qowl-element name="A7"...> <qowl-element name="A11" ...>

<qos-constraints ...> <qos-constraints ...> <qos-constraints ...>
<qos-constraint

name="geographicAffinity"

<qos-constraint
name="organizationAffinity"

<qos-constraint
name="gridSiteAffinity"
value="SID"/>
</qos-constraints>
</qowl-element> </qowl-element>

Affinity: Grid Site Affinity: Organization Affinity: Geography

value="0ID"/>
</qos-constraints>

value="GID"/>
<Iqos-constraints>
</qowl-element>

Figure 2. Specification of location affinity
with QoWL

Figure 2 depicts how location affinity can be expressed
with QoWL. The user may specify that a certain workflow
activity should be executed on a specific Grid site, on the
Grid resources of a specific organization, or on the Grid
resources of a specific geographical region.

Commonly Grid site affinity is not specified by the user,
but the Grid environment automatically maps workflow ac-
tivities to Grid resources based on the availability and per-
formance of resources. The goal is to minimize workflow
execution time. But, in the case that the user has the in-
formation (related to security or law) which can not be au-
tomatically obtained by the Grid environment, then he can
manually map the activity to a specific Grid site. Grid site
preference is specified by using the gos- constrai nt
named gri dSi t eAf fi ni ty. Moreover, the concept of
Grid site affinity may be used for performance optimiza-
tion. Figure 2 shows that activities A3 and A5 encompassed
by group GL should be on the same Grid site. The reason
could be the large data transfer between the activities A3

and A5 or some security reasons. The QoWL code of A3
depicts the specification of the affinity on the language level
(see Figure 2).

Organization affinity indicates the preference of the user
regarding the location of activity execution on Grid re-
sources that belong to a specific organization. These re-
sources can be geographically distributed. The user’s pref-
erences may be based on established trust relationships
with other companies. For instance, a vehicle produc-
ing company may wish to execute certain critical activi-
ties on a subset of the Grid in order to ensure that any
relevant information is not visible for competitors. Please
note that from information such as the duration of simula-
tion it may be deduced about the development stage of the
vehicle. Organization preference is specified by using the
gos- constrai nt namedor gani zati onAffinity.
Figure 2 depicts that activities A7, A8, A10 and A1l en-
compassed by group G2 should be executed on resources
that belong to the same organization.

Geographical affinity indicates the preference of the
user regarding the location of activity execution on
Grid resources that belong to a specific geographic re-
gion. Examples of geographical region include: coun-
try, state, or set of states. For instance several coun-
tries which have the same legal conditions for the elec-
tronic medical data processing may be eligible for ex-
ecution of certain activities. Geographical preference
is specified by using the qos-constraint named
geogr aphi cAf fi nity. Figure 2 shows that activities
All, Al12, A13 and A14 encompassed by group G3 should
be executed on resources that belong to the same geographic
region.

The agreement on time and cost constraints requires ne-
gotiation process with the candidate services as described
in [6]. The security and legal related QoS agreements are
met based on the extracted information of the service’s
XML descriptors, without negotiation process. The spec-
ified location affinity may be integrated with the available
security infrastructure, such as Web Services Policy [22].
The security and legal related QoS supports the concept of
Virtual Organization.

In the following section we describe the UML-based
modeling of QOWL elements.

2.2 The Definition of a UML-based DSL
for QoS-aware Workflows

UML 2.0 specification [17] provides a large set of mod-
eling elements and diagrams for modeling various types of
software and hardware systems. UML has a modular na-
ture, with the diagram type being the unit of modularity.
From the available 13 UML diagram types, we use only ac-
tivity diagrams for modeling Grid workflows. UML activity

diagrams are suitable for flow modeling of various types of
software or hardware systems. Hierarchical capabilities of
the UML activity diagram support modeling of systems at
arbitrary levels of detail and complexity. For instance, it is
possible to group a set of activities with the corresponding
flow into a higher-level activity with a well defined input
and output.

In order to enable the modeling of different types of sys-
tems, the UML modeling elements are specified in an ab-
stract manner without conceptual connection with a partic-
ular domain. However, too generic semantics of UML mod-
eling elements may present an obstacle for using UML in
a specific domain. For this reason, the UML specification
defines the mechanisms for specializing semantics of mod-
eling elements for a particular domain. We have defined
a Domain Specific Language (DSL) for QoS-aware Grid
workflows by using the UML extension mechanisms. The
UML may be extended by defining new modeling elements,
stereotypes, based on existing elements, base classes (i.e.
metaclasses). A stereotype is defined as a subclass of an
existing UML metaclass, with the associated tagged values
(i.e. metaattributes). Stereotypes are notated by the stereo-
type name enclosed in guillemets <<StereotypeName>>, or
by a specific graphic icon.

The benefits of definition of a DSL for the domain of
QoS-aware Grid workflows include: (1) the user is exposed
to only domain-relevant UML modeling elements, (2) the
language concepts have domain-specific interpretation, and
(3) models may be enriched with information that is used
by tools for automatic model transformation (for instance
to XML) or model processing (for instance for the purpose
of QoS negotiation).

For each element of our XML-based language QoWL
we have defined an element of UML-based DSL. Figure 3
depicts an instance of the procedure for defining elements
of our DSL for the domain of QoS-aware Grid workflows.
The XML representation of QOWL element Invoke is de-
picted in Figure 3(a). The DSL modeling element Invoke
is defined by stereotyping the base class Action (see Fig-
ure 3(b)).The Invoke activity is used for the invocation of
external services. The tagged values portType, operation,
inputVar and outputV ar may be used for specification of
the information that is needed for service invocation. The
graphical notation of stereotype Invoke is illustrated with
an example in Figure 3(c).

Figure 4 depicts the structure of type QTypes,
whose instances are used to specify the tagged value
gosContraints. QTypes contains the reqDescVar at-
tribute, which specifies the meta data (e.g. file size, image
resolution, number of iterations) that may be used for per-
formance prediction of the service. Additionally, QTypes
comprises zero or more entities of type QT'ype that are used
for description of specific QoS constraints (e.g. required ex-

<i nvoke nane="start" portType="appex"
wsdl ="http://bridge: 9355/ SPECT/ appex?wsdl
operation="start" inputVar="startRequest">
<qos-constraints regDescVar="start ReqDesc">
<qos-constraint nane="begi nTi me" wei ght="0. 3"
val ue="18-08-2005 12: 00: 00,0 MET"/>
<gos-constraint name="endTi ne" wei ght="0.2"
val ue="18-08-2005 14:00: 00,0 MET" />
<qos-constraint nane="price" wei ght="0.5"
val ue="20.00" />
<qgos-constraint name="geographi cAffinity"
value="G D" />
</ gos- constrai nt s>
</invoke>

(& QowL

«metaclass»
Action

«stereotype» «Invoke»
Invoke Start

ortType:Strin
\Fl)vsdl'é?ring 9 {portType = appex,
operation:String wsdl = http:/bridge:9355/
inputVar:étring SPECT/aPPEX'-’WSdl,
outputVar:String Qperatlon__ start,
gosContraints:QTypes inputVar = s?anRequ_est,
: gosContstraints = qti:QTypes}

(b) Defi nition (c) Usage

Figure 3. Stereotype Invoke

QType N QTypes RegType
+name : String +reqDescVar : String +inputVar : String
+weight : String! +qosConstraints : ArrayList +outputVar : String
+value : String +registries : ArrayList 10.% +wsdl : String

Figure 4. The structure of QTypes

ecution time). Moreover, QT ypes comprises zero or more
entities of type RegT ype that may be used for the specifica-
tion of registries where the potential services can be found.

The rest of the elements of our UML-based DSL are de-
fined in an analogous manner. Figure 5 depicts the complete
list of modeling elements of our DSL for QoS-aware Grid
workflows. The first column shows the names of newly
defined UML modeling elements (such as Process). The
second column shows the UML elements that serve as base
classes for customization (for instance, Activity). Tagged
values are shown in the third column. The fourth column
provides the description of the DSL elements.

2.3 Graphical Representation of QoWL
Elements with the UML-based DSL

Basic elements of QoWL are not further decomposed
into other elements. QoWL elements of this kind are: In-
voke, Copy, Receive, and Reply. Graphical representation
of the element I'nvoke is depicted in Figure 3. Other ba-
sic elements of QoWL are represented with the UML-based
DSL in an analogous manner.

Complex elements of QoWL may comprise basic and
complex elements. QoWL elements of this kind are:
Sequence, Flow, Switch, While, and Process. The

Stereotype Base Class Tags Description
Process Activity gosConstraints:QType, Indicates that Activity representsa
«Process» variables:VType workflow process
Invoke Action gosConstraints:QType, Indicates that Action represents the
«l nvoke» portType:String, operation invocation of an external Grid
operation:String, Service
inputVar:String,
outputVar:String,
wsdl:String
Copy Action from:String Indicates that Action represents the data
«Copy» to:String value assignment
Sequence SequenceNode gosConstraints:QType Indicates that SequenceNode represents a
«Sequence» series of actions which are executed
sequentially
Flow StructuredActivityNode gosConstraints:QType Indicates that SequenceNode represents a
«FI ow» set of actions which may be executed
concurrently
Receive AcceptEventAction portType:String, Indicates that AcceptEventAction
«Recei ve» operation:String, represents a blocking message receive
variable:String
wsdl:String
Reply SendSignal Action portType:String, Indicates that SendSignal Action represents
«Repl y» operation: String, the reply message to a message
variable:String that was received through a «Recei ve»
wsdl:String
Switch DecisionNode gosConstraints:QType Indicates that DecisionNode represents the
«Swi t ch» conditional execution
While LoopNode condition:Boolean Indicates that LoopNode represents awhile
«\Whi | e» loop. The loop body is executed until the

condition is violated.

Figure 5. Elements of the UML-based DSL for QoS-aware workflows

modeling of QoWL complex elements with the UML-based
DSL is described in the following.

2.3.1 The Sequence Element

The Sequence element specifies that a set of activities
should be executed sequentially in the predefined order.
Usually, the data dependency determines the execution or-
der of activities within the sequence. In absence of data de-
pendency, the reason for the sequential execution of a set of
activities may be the avoidance of parallelization overhead.

14 «Sequence» \

SampleSequence

«Sequence»
SampleSequence

@

{gosConstraints =
qti:QTypes}

. Figure 6. QOWL. element Sequence
Figure 6(%) depicts an instance of Sequence element.

The qti:QTypes attribute defines the QoS constraints. Fig-

ure 6(b) shows the comprised activities within the Sequence
element.

QoS information: The user may specify the QoS con-
straints for the element Sequence. The execution of the
comprised activities should comply with the QoS con-
straints of Sequence as follows,

e > ", time(A;) should not exceed the specified time

for Sequence,

e > ", price(A;) should not exceed the specified price

for Sequence,

o the location affinity is inherited by all the comprised

activities,

where n is the number of comprised activities within the
Sequence, and A, is the i*" activity in the Sequence.

2.3.2 The Flow Element

The Flow element specifies that a set of activities should be
executed concurrently.

Figure 7(a) depicts an instance of the Flow element.
The qti:QTypes attribute defines the QoS constraints. Fig-
ure 7(b) shows the comprised activities, A; and As, within
the Flow element that should be executed concurrently.

QoS information: The user may specify the QoS con-
straints for the element Flow. The execution of the com-
prised activities should comply with the QoS constraints of
Flow as follows,

«Flow»
SampleFlow

«Flow»
SampleFlow

{qosConstraints =
qti:QTypes} O
@ (b)

Figure 7. QWL element Flow

o Max{time(A;)|i = 1,..,n} should not exceed the
specified time for Flow,

e > " | price(A;) should not exceed the specified price
for Flow,

o the location affinity is inherited by all the comprised
activities,

where n is the number of comprised activities within the

Flow, and A; is the i*" activity of the Flow.

2.3.3 The Switch Element

The Switch element specifies that one of the alternate exe-
cution paths is selected based on a condition. Condition is
specified as a Boolean expression.

«Switch»
SampleSwitch

[otherwise]

[case condiuon

«Switch»
SampleSwitch

{gosConstraints =
qti:QTypes}

@ (b)
Figure 8. QOWL element Switch

Figure 8(a) depicts an instance of Switch element. The
qti:QTypes attribute defines the QoS constraints. Fig-
ure 8(b) shows the comprised activities, A; and As, within
the Flow element. If the Boolean expression case condition
evaluates to true then activity A; is executed, otherwise A,.

QoS information: The user may specify the QoS con-
straints for the element Switch. The specified QoS con-
straints have to be satisfied for each possible execution path.
The execution of the comprised activities should comply
with the QoS constraints of Switch as follows,

e Maz{time(B;)|i = 1,..,k} should not exceed the
specified time for Switch,

o Max{price(B;)|i = 1,..,k} should not exceed the
specified price for Switch,

o the location affinity is inherited by all the comprised
activities,

where k is the number of comprised execution paths
within the Switch element, and B; is the i*" branch of the
Switch.

2.3.4 The While Element

The While element specifies the iterative execution of the
comprised activities as long as the specified boolean expres-
sion evaluates to true.

«While»
SampleWhile

«While»
SampleWhile
{condition =

"BooleanExpression”}

@ (b)

Figure 9. QOWL element While

Figure 9(a) depicts an instance of while element. The
condition attribute specifies the Boolean expression which
is evaluated before each iteration. Figure 9(b) shows the
comprised activities, A; and A, within the While element.

QoS information: Because it is difficult to determine the
number of iterations in advance, then the QoS constraints
for the While element are not specified. However, it is pos-
sible to specify the QoS constraints for particular elements
within the while loop.

2.3.5 The Process Element

The Process element specifies the overall workflow. It com-
prises all other elements of the workflow.

«Process»
SampleProcess

«Receive»
SampleReceive
«Switch»
SampleSwitch
«Reply»
SampleReply

«Process»
SampleProcess

{gosConstraints =
qti:QTypes,
variables = vt:VType}

@ (b)

Figure 10. QoWL element Process

Figure 10(a) depicts an instance of Process element.
The qti:QTypes attribute defines the QoS constraints. The
vt:VType defines variables used for the data manipulation.
Figure 10(b) shows the comprised activities within the Pro-
cess element.

QoS information: The user may specify the QoS con-
straints for the Process element. The execution of the com-
prised activities should comply with the QoS constraints of
Process.

3 QoS-aware Workflow System

In this section we describe our system that provides sup-
port for the whole workflow lifecycle from specification to
execution.

3.1 Architectural Overview

Figure 11 shows the architecture of our system for QoS-
aware Grid workflows. The main components include: (1)
Teuta, which is a UML based graphical editor for workflow
specification; (2) QWE, which is a QoS-aware workflow
engine; and (3) VGE services, which are QoS-aware Grid
services.

QWE

XML Parser / QoS QoS
Unparser Negotiator Executor

m Planner Service Deployer
Traverser QowL (static/dynamic) and Generator
e
| '
i :

Teuta

Mode\ Grid Infrastructure
Checker

i |
i ’ Tomcat ‘ Apache AXIS ‘ i
:
]

Other
Non-VGE Services

QoS-aware
VGE Services

Service
1

Service Service Service
N 1 "N

Figure 11. Architecture of the system for
QoS-aware Grid workflows

A user may specify the workflow with Teuta by compos-
ing the predefined elements of UML-based DSL for QoS-
aware workflows (see Section 2.3). Furthermore, for each
workflow element different parameters (such as execution
time, price, location affinity) may be specified that deter-
mine the user’s QoS requirements. Thereafter, Teuta veri-
fies whether the specified workflow is well defined. In the
case that the workflow model is well defined, Teuta gen-
erates the corresponding QOWL representation. The QWE
engine interprets the QoWL workflow, negotiates with spec-
ified services, applies the selected workflow planning strat-
egy, selects appropriate services and finally executes the

specified workflow. If the specified tasks need QoS guar-
antees we use VGE services, which are able to give certain
QoS guarantees. In other cases (for instance in case that
execution time of the service is negligible) the use of other
non-VGE services may be considered. In what follows the
main architectural components are explained in more detail.

3.2 Teuta

Teuta is a UML-based graphical editor. It is designed as
a platform independent, configurable and extensible tool.
Therefore, it is possible to extend Teuta with new types
of diagrams and modeling elements for various domains.
Examples of usage of Teuta include performance model-
ing of high performance programs [20] and specification
of scientific workflows within the framework of Askalon
project [2]. In order to provide tool-support for our ap-
proach described in this paper we have extended Teuta for
QoS-aware workflows and integrated with QWE.

Teuta architecture is shown on the left-hand side of Fig-
ure 11. Teuta comprises three main components: Graphical
User Interface (GUI), Model Checker, and Model Traverser.
We illustrate the GUI of Teuta with examples of real-world
workflows in Section 4.

The Model Checker verifies whether the model is well
defined. The rules for model checking are specified by
using our XML-based Model Checking Language (MCL).
The model checker gets the model description froman MCL
file. This MCL file contains a list of available diagrams,
modeling elements and the set of rules that defines how the
elements may be interconnected.

The Model Traverser provides the possibility to walk
through the model, to visit each modeling element, and to
access its properties (for instance QoS constraints). We use
the model traversing for the generation of various model
representations; for instance, a QoWL representation serves
as input for QWE engine (see Figure 11).

3.3 QWE

The QoWL documents generated by the Teuta can be ex-
ecuted using the QoS-aware Grid Workflow Execution En-
gine (QWE). In this section we briefly describe the main
components of QWE. A more comprehensive description
of QWE can be found in [7].

QWE is depicted on the right-hand side of Figure 11.
The main parts of the QWE engine are: (1) XML parser and
unparser generates the intermediary representation of the
QoWL workflow; (2) the QoS Negotiator queries the reg-
istries, generates necessary QoS requests and receives of-
fers from services; (3) the Planner component calculates a
workflow execution plan considering the selected workflow

planning strategy (static, dynamic) and the selected work-
flow planning technique (Integer Programming, Genetic Al-
gorithm, MCDM, etc.); (4) the Service Deployer and Gen-
erator exposes a QoWL workflow as a Web service and the
QoS Executer starts the execution of the QoWL workflow.

The proper execution of QoS-aware workflows demands
the availability of QoS enabled services for the execution of
tasks that need QoS guarantees. Such services are explained
in the following section.

3.4 QoS-aware Grid Services

The Vienna Grid Environment (VGE) [4] is a service-
oriented infrastructure for the provision of HPC applica-
tions as Grid services. VGE supports a flexible QoS negoti-
ation model where clients may negotiate dynamically QoS
guarantees on execution time, price and other constraints
with potential service providers. VGE services encapsulate
native HPC applications and offer a set of common opera-
tions for job execution, job monitoring, data staging, error
recovery, and application-level quality of service support.
VGE services are exposed using WSDL and securely ac-
cessed via SOAP/WS-Security.

In order to provide support for dynamic QoS negotiation,
VGE services rely on a generic QoS module which com-
prises an application-specific performance model, a pric-
ing model, a compute resource manager and several XML
descriptors. Within the context of European Commission
funded GEMSS project VGE has been successfully used for
the development of a testbed for six medical simulation and
image reconstruction Grid services [16].

4 Case Study

In this section we demonstrate the modeling of QoS-
aware workflows using a real world application for maxillo
facial surgery simulation.

4.1 Maxillo Facial Surgery Simulation

Maxillo facial surgery simulation (MFSS) is one of the
six medical applications that we have used within the frame-
work of GEMSS project [16]. The application facilitates
the work of medical practitioners and provides the pre-
operative virtual planning of maxillo-facial surgery. The
application consists of a set of components which can run
on a local machine or on different remote machines. These
components may be organized as a Grid workflow in order
to simplify the work of the end users. Cao et al. [8] de-
scribes the specification of MFSS workflow using the Tri-
ana tool [9], but the QoS requirements are not considered.
In the following we describe the QoS-aware specification of
the MFSS workflow.

4.2 Workflow Specification

We have used our UML hased workflow editor Teuta (see
Section 3.2) for the specification of the MFSS workflow.
The workflow specification process involved the definition
of the flow of workflow activities and the association of the
corresponding properties (such as QoS related properties).

Figure 12 illustrates the process of specification of
MFSS workflow with Teuta. The user may combine the
predefined UML modeling elements, which are available in
the Teuta toolbar, to specify the flow of workflow activities.
The left hand side of the Figure 12(a) depicts MFSSPro-
cess activity, which is an instance of the process element. A
process element is indicated by stereotype <<pr ocess>>.
The MFSSProcess activity indicates the root of the MFSS
workflow. Complex activities, such as process, may com-
prise a group of activities. Teuta supports hierarchical mod-
eling, by representing the body of a complex activity as a
subgraph. The body of MFSSProcess activity is depicted
on the right hand side of Figure 12(a). The UML element
InitialNode, which is represented as a filled black circle,
defines the starting point of a workflow or of a complex
activity. We have used the copy element, which is indi-
cated by stereotype <<copy>>, to express the data flow.
For instance, MFSSMetaData activity copies the input data
of the workflow to the corresponding activities. UML el-
ements Fork and Join, which are represented as bold hor-
izontal bars, express the split and join of multiple flow
branches respectively. For instance, after the completion of
ImageLoading activity, the flow is split into three branches.
UML elements Fork and Join are mapped to the BPEL ele-
ment Flow. The UML element ActivityFinal, which is rep-
resented as a circle surrounding a smaller solid filled circle,
indicates the end of the workflow or the end of a complex
activity.

The MFSSProcess activity comprises several complex
activities of type sequence, which are indicated by the
stereotype <<sequence>>. For instance, the body of
FEMSequence activity, placed on the right-down corner of
Figure 12(a)), is represented in Figure 12(b). An invoke
element, which is indicated by stereotype <<i nvoke>>,
specifies the invocation of a remote or local service oper-
ation. For instance, the activity UploadOperation invokes
the upload operation of the remote service.

With each workflow element we have associated a set of
properties by using the property panel, which is located on
the right hand side of Teuta GUI (see Figure 12(b)). For
instance, Figure 12(b) shows the properties of the invoke
element StartOperation. The top compartment of the prop-
erty panel allows the association of attributes such as name,
portType and operation. We use the lower three compart-
ments to specify QoS constraints such as beginTime, end-
Time, price, and geographicAffinity.

14

File Edit Format Insest Construcls View To

ST

=] = J
J;
J =11

«sel\nmzax <eopye
ViewSequence MGtoCAD

Flll Edit Forma Inser Construc View Tool: Annotal Help
kadl %A |&] &
oo e @ ¢+« x|

processsn
MFSSProcess

I .

o

(& [% ala[a][® <] [\ Teuta,~.Qos.Aware.) T T S S P " ta BRI
i File Edt Format Insert Constucts View Tools Anmotate Help
ole [g =
Sl/e[®[®lolx+]| DX 8 - alal® x| alw|[alafa][2]|c[x]n[e]a] <
. B = ® 0 o =+ D=8

sequences
FEMSequence

© MFsS_Pracess | T @ Aqvivina s =
"O CAD Sequence | CJ FEM Sequence | [Edge.26
O View.Sequence | O C1D_Sequence | [edge 25
" O VM.Sequence | OO MG_Sequence [edge 27
—i| ||¢ O FeM_sequence
B @ nniialiode 3
@ Actiitfinal 2
odap
© UploadOperation L
© StartGperation E
O DownloadOperation &
Model Tree | Search | Bookmarks |
ributes:
Name. tart e
Stereaiype invake
) o Y =l Predefined =
{ StartOperation portType
wscl
] operation start
inputyar an

cinioke 2

DownloadOperation

QoS: Request Descriptor

maxilloRecDescVar

QoS: Registry Locations
WSDL PortType
h:

Operation

it
http://K t
http: faure

D

EHIND

QoS: Constraints

Name Value

2006-02-02T1

2006-02-02T18:00:00.
rice 15 07

|| | [gevgraphicattinity AT

Weight

beginTime
endTime

| |

= Selected element: StartOperation

(&) UML representation of MFSS workflow

(b) Properties of SartOperation activity

<i nvoke inputVar="Cl D' name="Start Cperation"

operation="start"
<qos-constraints Rquesc:” maxi | | oReqDescVar " >

por t Type="Appl i cati onExecut or" >

"http://gescher.univie.ac.at:9357/registry/reg?wsdl "
“http://ki munivie.ac.at:9357/registry/reg?wsdl " />
“http://aurora.tuw en.ac. at: 9357/ registry/reg?wsdl "

name="begi nTi ne"

<registry wsdl =
<registry wsdl =
<registry wsdl ="
<gos-constrai nt
<qos-constraint
<qgos-constraint
<qgos-constraint

name="price" val ue="15" wei ght="0.7" />
name="geogr aphi cAffinity" val ue="AT" />

/

/>

>

1>

val ue="2006- 02- 02T16: 00: 00. 000+02: 00" wei ght ="0. 3"
nane="endTi me" val ue="2006- 02- 02T18: 00: 00. 000+02: 00"

/>

</ qos-constrai nt s>
</'i nvoke>

(c) QoWL representation of SartOperation activity

Figure 12. Specification of MFSS workflow with Teuta editor

After the completion of MFSS workflow specification
Teuta is able to generate automatically the corresponding
QoWL representation, which is used as input for QWE for
workflow execution (see Section 3.1). An excerpt of QoWL
representation of MFSS workflow, which specifies the Star-
tOperation activity, is depicted in Figure 12(c).

5 Related Work

Several projects are contributing to the establishment and
improvement of the Grid workflow technology, each focus-
ing on a specific research aspect. Triana [9], Askalon [2],
JOpera [18], eXeGrid [15] are developing tools and lan-
guages for graphical workflow composition. The P-
GRADE Portal is exploring the collaborative Grid work-
flows [21]. Pegasus [3] and LEAD [19] projects are fo-
cused on the development of workflow support for large
scale Grid applications (such as galaxy morphology, tomog-
raphy and mesoscale meteorology). The aspects of seman-
tic grid workflows are investigated within the Taverna [23]
and Kepler [5] projects.

There is not much related work focused on the devel-
opment of a Grid services infrastructure that provides QoS
guarantees. Moreover, not enough attention is paid to QoS-
aware Grid workflows. Gridbus Project [12] is address-
ing the QoS-aware Grid workflows. Recent developments
are following research problems on cost-based scheduling
of scientific workflow applications [24]. However, within
the framework of Gridbus project workflows are specified
textually based on XML, which has been proved as a non-
intuitive and error-prone approach. While time and cost
constraints are considered, there is no support for secu-
rity and legal QoS constraints. In contrast to existing re-
lated work, we are developing a QoS-aware workflow sys-
tem that supports time, cost, security, and legal constraints.
Moreover, our system supports the graphical specification
of QoS-aware workflows based on the latest UML standard.

6 Conclusions and Future Work

We consider that for the wide acceptance of Grid tech-
nology it is important that specification of tasks to be exe-
cuted on the Grid is simple, and that the execution of these

tasks should meet the user’s requirements. In this paper we
have addressed the issue of high-level specification of QoS-
aware Grid workflows. In order to streamline the process of
workflow specification we have developed a Domain Spec-
ification Language (DSL) for QoS-aware Grid workflows
based on UML2.0 standard. Furthermore, we have devel-
oped a system prototype that supports the whole workflow
lifecycle from high-level specification to execution. Our
system allows the specification of a comprehensive set of
QoS requirements, that consider performance, economical,
legal and security aspects. We evaluated our approach by
modeling a real-world workflow for maxillo facial surgery
simulation, and showed the hierarchical modeling capabil-
ities of our approach for modeling complex activities. In
the future we plan to extend our approach with workflow
adaptivity and optimization mechanisms.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, S. Weerawarana: ’Business Process Execution Lan-
guage for Web Services Version 1.1”,
http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/ 2003

[2] Askalon Project. http://dps.uibk.ac.at/projects/askalon/

[3] J. Blythe, E. Deelman, Y. Gil. Automatically Composed
Workflows for Grid Environments. IEEE Intelligent Systems
19(4): 16-23 2004.

[4] S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt. VGE -
A Service-Oriented Grid Environment for On-Demand Su-
percomputing. Proceedings of the Fifth IEEE/ACM Interna-
tional Workshop on Grid Computing (Grid 2004), Pittsburgh,
PA, USA, November 2004.

[5] C. Berkley, S. Bowers, M. Jones, B. Ludascher, M. Schild-
hauer, J. Tao. Incorporating Semantics in Scientific Workflow
Authoring. 17th International Conference on Scientific and
Statistical Database Management, University of California,
Santa Barbara, CA, USA, 2005

[6] 1. Brandic, S. Benkner, G. Engelbrecht, R. Schmidt. Towards
Quality of Service Support for Grid Workflows. Proceedings
of the European Grid Conference 2005 (EGC2005), Amster-
dam, The Netherlands, February 2005.

[7] 1. Brandic, S. Benkner, G. Engelbrecht, R. Schmidt. QoS
Support for Time-Critical Grid Workflow Applications. Pro-
ceedings 1st IEEE International Conference on eScience and
Grid Computing, Melbourne, Australia, December 2005.

[8] J. Cao, G. Berti, J. Fingberg, J. G. Schmidt. Implementa-
tion of Grid-enabled medical simulation applications using
workflow techniques. The Second International Workshop on
Grid and Cooperative Computing, Shanghai, China, 2003.

[9] D.Churches, G. Gombas, A. Harrison, J. Maassen, C. Robin-
son, M. Shields, I. Taylor and I. Wang. Programming Scien-
tific and Distributed Workflow with Triana Services. In Grid
Workflow 2004 Special Issue of Concurrency and Computa-
tion: Practice and Experience, 2005.

[10] T. Fahringer, S. Pllana, and A. Villazon. AGWL: Abstract
Grid Workflow Language. International Conference on Com-
putational Science, Programming Paradigms for Grids and
Metacomputing Systems. Krakow, Poland, June 2004

[11] 1. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the
Grid - Enabling Scalable Virtual Organizations. The Inter-
national Journal of High Performance Computing Applica-
tions, 15(3):200-222, 2001.

[12] The Gridbus Project. http://www.gridbus.org/

[13] The GEMSS Project: Grid-Enabled Medical Sim-
ulation Services, EU IST Project, 1ST-2001-37153,
http://www.gemss.de/

[14] GEMSS Consortium. Report on COTS Security Technolo-
gies and Authorisation Services. Deliverable D2.2¢c. GEMSS
Project, European Commission Framework V Project No.
IST-2001-37153. February 2004

[15] A. Hoheisel. User Tools and Languages for Graph-based
Grid Workflows. In: Special Issue of Concurrency and Com-
putation: Practice and Experience, Wiley, 2004.

[16] D. M. Jones, J. W. Fenner, G. Berti, F. Kruggel, R. A.
Mehrem, W. Backfrieder, R. Moore, A. Geltmeier. The
GEMSS Grid: An evolving HPC Environment for Medical
Applications, HealthGrid 2004, Clermont-Ferrand, France,
2004.

[17] Object Management Group (OMG). UML 2.0 Superstruc-
ture Specification. http://www.omg.org, August 2005.

[18] C. Pautasso. JOpera: Visual Composition of Grid Services
In: ERCIM News No. 59, October 2004

[19] B. Plale, D. Gannon, D. A. Reed, S. J. Graves, K. Droege-
meier, B. Wilhelmson, M. Ramamurthy. Towards Dynami-
cally Adaptive Weather Analysis and Forecasting in LEAD.
5th International Conference on Computational Science, At-
lanta, GA, USA, 2005

[20] S. Pllana and T. Fahringer. Performance Prophet: A Perfor-
mance Modeling and Prediction Tool for Parallel and Dis-
tributed Programs. In The 2005 International Conference on
Parallel Processing (ICPP 2005 Workshops), Oslo, Norway,
June 2005. IEEE Computer Society.

[21] G. Sipos, G. J. Lewis, P. Kacsuk, V. N. Alexandrov.
Workflow-Oriented Collaborative Grid Portals. Proceedings
of the European Grid Conference 2005 (EGC2005), Amster-
dam, The Netherlands, February 2005.

[22] Web Services Policy (WS-Policy). http://ifr.sap.com/ws-
policy/index.html

[23] K. Wolstencroft, T. Oinn, C. Goble, J. Ferris, Ch. Wroe,
P. Lord, K. Glover, R. Stevens. Panoply of Utilities in Tav-
erna. Proceedings 1st IEEE International Conference on
eScience and Grid Computing, Melbourne, Australia, De-
cember, 2005.

[24] J. Yu, R. Buyya, and Ch. K. Tham. QoS-based Scheduling
of Workflow Applications on Service Grids. Proceedings of
the 1st IEEE International Conference on e-Science and Grid
Computing, 2005, Melbourne, Australia.

[25] J. Yu and R. Buyya. A Taxonomy of Workflow Management
Systems for Grid Computing, Technical Report, GRIDS-TR-
2005-1, Grid Computing and Distributed Systems Labora-
tory, University of Melbourne, Australia, March 10, 2005.
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

