
12 July 2005

Parallel Computing Patterns
for Grid Workflows

Cesare Pautasso, Gustavo Alonso
Department of Computer Science, ETH Zurich, Switzerland

{pautasso, alonso}@inf.ethz.ch – www.jopera.org

© Cesare Pautasso | www.jopera.org



212 July 2005 Cesare Pautasso | www.jopera.org

Grid Workflows for Large Scale eScience

Service 
Oriented
Grid

Grid
Workflows

Large
Scale

eScience

How well
can we do

Parallel Computing
with

Workflows?



312 July 2005 Cesare Pautasso | www.jopera.org

Why Parallel Computing Patterns?
• Language primitives for modeling parallelism

• Common classification
• Unify different syntax/notations
• Test of expressive power

• Efficient implementation for Grid workflows
• Do all systems support all patterns?
• What is the semantics of parallelism?
• Impact on scheduling, data management, lineage

tracking features



412 July 2005 Cesare Pautasso | www.jopera.org

Overview
• Parallel Execution

• Simple Parallelism
• Data Parallelism

• Pipelined Execution
• Best Effort
• Blocking
• Buffered
• Superscalar
• Streaming



512 July 2005 Cesare Pautasso | www.jopera.org

Parallel Execution: Simple Parallelism
• Parallel split (Classical Control Flow Pattern)
• Independent tasks…

• …run in parallel (strong semantics)
• …may run in parallel if enough resources are available

(realistic implementation)
• …are serialized non deterministically (weak semantics)

• Modeling:
• Explicit or Implicit
• Control flow or Data flow
• Graph based or Block based (or both)



612 July 2005 Cesare Pautasso | www.jopera.org

Modeling Simple Parallelism
• Data Flow, Graph Based, Implicit

Examples:

SCIRun

Kepler

Triana



712 July 2005 Cesare Pautasso | www.jopera.org

Modeling Simple Parallelism
• Control Flow, Graph Based

Example:
YAWL

JOpera
GEL

Example:

UML



812 July 2005 Cesare Pautasso | www.jopera.org

Modeling Simple Parallelism
• Control Flow, Block Based, Explicit

Example:

BPMN

Example:

BPEL4WS



912 July 2005 Cesare Pautasso | www.jopera.org

Parallel Execution: Data Parallelism
• SPMD: Run a copy of the same task over multiple

data elements (in parallel)
• How to control the amount of parallelism?

• Static (Design-time) vs. Dynamic (Run-time)
• Manual vs. Adaptive
• Homogeneous vs. Heterogeneous partitions

• Modeling
• Data Flow or Control Flow
• Graph Rewriting, Block based
• First-Order Functions (Map)



1012 July 2005 Cesare Pautasso | www.jopera.org

Modeling Data Parallelism
• Data Flow, Graph Rewriting

• Static or Dynamic Examples:
Triana

Taverna
JOpera



1112 July 2005 Cesare Pautasso | www.jopera.org

Modeling Data Parallelism
• Data Flow, First-Order Functions

Example:

Kepler



1212 July 2005 Cesare Pautasso | www.jopera.org

Modeling Data Parallelism
• Control Flow, Graph Based

Examples:

Teuta

UML



1312 July 2005 Cesare Pautasso | www.jopera.org

Modeling Data Parallelism
• Control Flow, Block Based

Examples:

WS-BPEL

AGWL

Karajan

GEL



1412 July 2005 Cesare Pautasso | www.jopera.org

Overview
• Parallel Execution

• Simple Parallelism
• Data Parallelism

• Pipelined Execution
• Best Effort
• Blocking
• Buffered
• Superscalar
• Streaming



1512 July 2005 Cesare Pautasso | www.jopera.org

Parallel Execution: Pipelined Execution
• Stream multiple data elements sequentially

through a sequence of tasks

1, 2, 3, …

1
2

3



1612 July 2005 Cesare Pautasso | www.jopera.org

Modeling Pipelined Execution
• Syntax very similar, but semantics changes a lot!

• How to deal with non uniform task duration?
• Best Effort
• Blocking
• Buffering
• Superscalar
• Streaming



1712 July 2005 Cesare Pautasso | www.jopera.org

Best Effort Pipelined Execution

• Drop data elements on pipeline collisions
• Advantages:

• Simplified implementation
• Some applications may tolerate data loss

• Problem:
• Downsampling is non deterministic



1812 July 2005 Cesare Pautasso | www.jopera.org

Blocking Pipelined Execution

• Tasks are blocked if successors are busy
• Advantages:

• Avoid data loss in the pipeline
• Problem:

• Pipeline speed limited by slowest task
• Data may be lost before it enters the pipeline



1912 July 2005 Cesare Pautasso | www.jopera.org

Buffered Pipelined Execution

• Tasks are decoupled by buffers
• Advantages:

• Collisions are prevented
• Best applied to tasks having variable speed

• Problem:
• Buffer capacity is limited (Blocking still needed)



2012 July 2005 Cesare Pautasso | www.jopera.org

Superscalar Pipelined Execution

• If a task is busy, create another instance
• Advantage:

• Data loss avoided without blocking
• Problem:

• Data elements may overtake one another
• Where to enforce synchronization?



2112 July 2005 Cesare Pautasso | www.jopera.org

Streaming Pipelined Execution

• Tasks exchange data while running
• Advantages:

• Suitable for a distributed (P2P) engine
• Problems:

• Shifts complexity from the workflow engine to the tasks
• Tasks exchange data while running
• Workflow/Task interface more complex



2212 July 2005 Cesare Pautasso | www.jopera.org

Conclusions
 Applying parallel computing techniques to Grid

workflows has become a necessity for large scale
eScience applications.

 Not all Grid workflow languages/systems we surveyed
support all patterns:
 Simple Parallelism & Static Data Parallelism supported by all
 Dynamic Data Parallelism still a challenge (for some)
 Pipelining implemented with many different semantics

 Let us know how your Grid workflow language/tool
supports these patterns!



12 July 2005

Cesare Pautasso, Gustavo Alonso
Department of Computer Science, ETH Zurich, Switzerland

pautasso@inf.ethz.ch – www.jopera.org

© Cesare Pautasso | www.jopera.org

Parallel Computing Patterns
for Grid Workflows


