m' Information and

4 S hidichs Hachack " Communication Systems
Eidgendssische Technische Hochschule Ziric
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn gy Zurich Research Group

Parallel Computing Patterns
for Grid Workflows

Cesare Pautasso, Gustavo Alonso
Department of Computer Science, ETH Zurich, Switzerland
{pautasso, alonso}@inf.ethz.ch — www.jopera.org

A Nopera

inf

Computer Scienc
rocess Support for Web Services |

T — ."-' o
""’-Hllﬂlapm"—__a\ e

k" e N 5 y

P

© Cesare Pautasso | www.jopera.org

Eidgenossische Technische Hachschule Ziirich

— iy r»~<_‘<_ =
Swiss Federal [nstitute ofTacholls yZuich 3 I & | —u : - |_Process Support for Web Services [~
|

Grid Workflows for Large Scale eScience

How well

Cory can we do Large

ervice .

Oriented Parallel Cpmputlng Scale

Grid with eScience
Workflows?

Grid
Workflows

Cesare Pautasso | www.jopera.org

Why Parallel Computlng Patterns?

- Language primitives for modeling parallelism
Common classification
Unify different syntax/notations
Test of expressive power

- Efficient implementation for Grid workflows

Do all systems support all patterns?

What is the semantics of parallelism?

Impact on scheduling, data management, lineage
tracking features

Cesare Pautasso | www.jopera.org

Overview

« Parallel Execution

Simple Parallelism

Data Parallelism

- Pipelined Execution

Best Effort
Blocking
Buffered
Superscalar
Streaming

%

Cesare Pautasso | www.jopera.org

R
-

Sequence

Parallel Execution: Simple Parallelism

- Parallel split (Classical Control Flow Pattern)

- Independent tasks...

..run in parallel (strong semantics)

..may run in parallel if enough resources are available
(realistic implementation)

..are serialized non deterministically (weak semantics)
- Modeling:

Explicit or Implicit

Control flow or Data flow

Graph based or Block based (or both)

Cesare Pautasso | www.jopera.org

Modeling Simple Parallelism

- Data Flow, Graph Based, Implicit

L

[

4 /— Examples:
Kﬁ SCIRun

— Kepler

Triana
y

Modeling Simple Parallelism

Control Flow, Graph Based

Example:

YAWL
JOpera
GEL

4

N\
g

Cesare Pautasso | www.jopera.org

N
S

Example:

UML

Modeling Simple Parallelism | ¢,y

- Control Flow, Block Based, Explicit BPEL4WS

Sequence

Example:

BPMN

/4

Parallel Execution: Data Parallelism

« SPMD: Run a copy of the same task over multiple
data elements (in parallel)

- How to control the amount of parallelism?
Static (Design-time) vs. Dynamic (Run-time)
Manual vs. Adaptive
Homogeneous vs. Heterogeneous partitions

- Modeling
Data Flow or Control Flow

Graph Rewriting, Block based
First-Order Functions (Map)

Cesare Pautasso | www.jopera.org

Modeling Data Parallelism

Data Flow, Graph Rewriting

Static or Dynamic

Examples:

Triana
Taverna
JOpera

4

Cesare Pautasso | www.jopera.org

Split

Merge

% ‘ - EL
Modeling Data Parallelism

Data Flow, First-Order Functions

L]

Example:

Kepler

! .
—— rO - -

Modeling Data Parallelism

« Control Flow, Graph Based

HEEEE

Y

< ParallelLoop > o
Next <
T*
TL\-— Examples:
1 Teuta

UML

Modeling Data Parallelism

- Control Flow, Block Based

Sequence
ParallelForEach | Examples:
: T i WS-BPEL
. : AGWL
Karajan
GEL V

Cesare Pautasso | www.jopera.org

TTE
= £

Overview

’ pa : - &
Oy < - - . - sy - —_—

- Parallel Execution
Simple Parallelism

Data Parallelism s e
- Pipelined Execution

Best Effort - (i

Blocking ., ..

Buffered oty 1 ?“M”?_

Su perscalar W_LiYQ Rascl)

Streaming g 0 gy [0 8 e

Parallel Execution: Pipelined Execution

- Stream multiple data elements sequentially

through a sequence of tasks 1

b 2

1,2,3, . J

(T T TI—P \ 3
| LN v
J, LN
|

Cesare Pautasso | www.jopera.org

Modeling Pipelined Execution

Syntax very similar, but semantics changes a lot!

I

How to deal with non uniform task duration?
Best Effort
Blocking
Buffering
Superscalar

Streaming

-) 3 -
i Hachschule Zirich § —— 1"{ | — e B _
ogy Zurich Lo ! = &

Process Support for Web Services

Best Effort Pipelined Execution

Finishe! : Ready q] Busy : Ready

- Drop data elements on pipeline collisions

- Advantages:
Simplified implementation
Some applications may tolerate data loss

Problem:

Downsampling is non deterministic

Cesare Pautasso | www.jopera.org

Blocking Pipelined Execution

Fini she! Blm(¢ Busy Ready

« Tasks are blocked if successors are busy

- Advantages:

Avoid data loss in the pipeline

Problem:

Pipeline speed limited by slowest task
Data may be lost before it enters the pipeline

Cesare Pautasso | www.jopera.org

Buffered Pipelined Execution

Tasks are decoupled by buffers
Advantages:

Collisions are prevented
Best applied to tasks having variable speed

Problem:
Buffer capacity is limited (Blocking still needed)

Cesare Pautasso | www.jopera.org

- If ataskis busy, create another instance

- Advantage:
Data loss avoided without blocking

Problem:

Data elements may overtake one another
Where to enforce synchronization?

Cesare Pautasso | www.jopera.org

Streaming Pipelined Execution

o0) o0 o000
Busy o Busy Busy Busy

» Tasks exchange data while running

- Advantages:
Suitable for a distributed (P2P) engine

« Problems:
Shifts complexity from the workflow engine to the tasks
Tasks exchange data while running
Workflow/Task interface more complex

Cesare Pautasso | www.jopera.org

Eidgendssische Technische Hachschule Ziirich

Conclusions

: Process Support for Web Services [~

= Applying parallel computing techniques to Grid
workflows has become a necessity for large scale
eScience applications.

= Not all Grid workflow languages/systems we surveyed
support all patterns:

Simple Parallelism & Static Data Parallelism supported by all
Dynamic Data Parallelism still a challenge (for some)
Pipelining implemented with many different semantics

= Let us know how your Grid workflow language/tool
supports these patterns!

Cesare Pautasso | www.jopera.org

m' Information and

4 S hidichs Hachack " Communication Systems
Eidgendssische Technische Hochschule Ziric
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn gy Zurich Research Group

Parallel Computing Patterns
for Grid Workflows

Cesare Pautasso, Gustavo Alonso
Department of Computer Science, ETH Zurich, Switzerland
pautasso@inf.ethz.ch —www.jopera.org

Informatik ' X opera
Computer Scienc —
i Process Support for Web Services |

inf

T — ."-' o
""’-Hllﬂlapm"—__a\ e

k" e N 5 :

P

© Cesare Pautasso | www.jopera.org

