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Why Parallel Computlng Patterns?

- Language primitives for modeling parallelism
Common classification
Unify different syntax/notations
Test of expressive power

- Efficient implementation for Grid workflows

Do all systems support all patterns?

What is the semantics of parallelism?

Impact on scheduling, data management, lineage
tracking features
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Overview

« Parallel Execution

Simple Parallelism

Data Parallelism

- Pipelined Execution

Best Effort
Blocking
Buffered
Superscalar
Streaming
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Parallel Execution: Simple Parallelism

- Parallel split (Classical Control Flow Pattern)

- Independent tasks...

..run in parallel (strong semantics)

..may run in parallel if enough resources are available
(realistic implementation)

..are serialized non deterministically (weak semantics)
- Modeling:

Explicit or Implicit

Control flow or Data flow

Graph based or Block based (or both)
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Modeling Simple Parallelism

- Data Flow, Graph Based, Implicit
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Modeling Simple Parallelism

Control Flow, Graph Based

Example:

YAWL
JOpera
GEL
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Modeling Simple Parallelism | ¢,y

- Control Flow, Block Based, Explicit BPEL4WS
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Parallel Execution: Data Parallelism

«  SPMD: Run a copy of the same task over multiple
data elements (in parallel)

- How to control the amount of parallelism?
Static (Design-time) vs. Dynamic (Run-time)
Manual vs. Adaptive
Homogeneous vs. Heterogeneous partitions

- Modeling
Data Flow or Control Flow

Graph Rewriting, Block based
First-Order Functions (Map)
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Modeling Data Parallelism

Data Flow, Graph Rewriting

Static or Dynamic

Examples:

Triana
Taverna
JOpera
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Modeling Data Parallelism

Data Flow, First-Order Functions
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Example:

Kepler




! .
—— rO - -

Modeling Data Parallelism

«  Control Flow, Graph Based
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Modeling Data Parallelism

- Control Flow, Block Based

Sequence
ParallelForEach | Examples:
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Parallel Execution: Pipelined Execution

- Stream multiple data elements sequentially

through a sequence of tasks 1

b 2
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Modeling Pipelined Execution

Syntax very similar, but semantics changes a lot!

I

How to deal with non uniform task duration?
Best Effort
Blocking
Buffering
Superscalar

Streaming
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Best Effort Pipelined Execution

Finishe! : Ready q] Busy : Ready

- Drop data elements on pipeline collisions

- Advantages:
Simplified implementation
Some applications may tolerate data loss

Problem:

Downsampling is non deterministic

Cesare Pautasso | www.jopera.org



Blocking Pipelined Execution

Fini she! Blm( ¢ Busy Ready

« Tasks are blocked if successors are busy

- Advantages:

Avoid data loss in the pipeline

Problem:

Pipeline speed limited by slowest task
Data may be lost before it enters the pipeline
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Buffered Pipelined Execution

Tasks are decoupled by buffers
Advantages:

Collisions are prevented
Best applied to tasks having variable speed

Problem:
Buffer capacity is limited (Blocking still needed)

Cesare Pautasso | www.jopera.org



- If ataskis busy, create another instance

- Advantage:
Data loss avoided without blocking

Problem:

Data elements may overtake one another
Where to enforce synchronization?
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Streaming Pipelined Execution

o0 ) o0 o000
Busy o Busy Busy Busy

»  Tasks exchange data while running

- Advantages:
Suitable for a distributed (P2P) engine

«  Problems:
Shifts complexity from the workflow engine to the tasks
Tasks exchange data while running
Workflow/Task interface more complex
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Eidgendssische Technische Hachschule Ziirich

Conclusions

: Process Support for Web Services [~

= Applying parallel computing techniques to Grid
workflows has become a necessity for large scale
eScience applications.

= Not all Grid workflow languages/systems we surveyed
support all patterns:

Simple Parallelism & Static Data Parallelism supported by all
Dynamic Data Parallelism still a challenge (for some)
Pipelining implemented with many different semantics

= Let us know how your Grid workflow language/tool
supports these patterns!
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