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Why Parallel Computing Patterns?
• Language primitives for modeling parallelism

• Common classification
• Unify different syntax/notations
• Test of expressive power

• Efficient implementation for Grid workflows
• Do all systems support all patterns?
• What is the semantics of parallelism?
• Impact on scheduling, data management, lineage

tracking features
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Overview
• Parallel Execution

• Simple Parallelism
• Data Parallelism

• Pipelined Execution
• Best Effort
• Blocking
• Buffered
• Superscalar
• Streaming
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Parallel Execution: Simple Parallelism
• Parallel split (Classical Control Flow Pattern)
• Independent tasks…

• …run in parallel (strong semantics)
• …may run in parallel if enough resources are available

(realistic implementation)
• …are serialized non deterministically (weak semantics)

• Modeling:
• Explicit or Implicit
• Control flow or Data flow
• Graph based or Block based (or both)
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Modeling Simple Parallelism
• Data Flow, Graph Based, Implicit

Examples:

SCIRun

Kepler

Triana
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Modeling Simple Parallelism
• Control Flow, Graph Based

Example:
YAWL

JOpera
GEL

Example:

UML
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Modeling Simple Parallelism
• Control Flow, Block Based, Explicit

Example:

BPMN

Example:

BPEL4WS
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Parallel Execution: Data Parallelism
• SPMD: Run a copy of the same task over multiple

data elements (in parallel)
• How to control the amount of parallelism?

• Static (Design-time) vs. Dynamic (Run-time)
• Manual vs. Adaptive
• Homogeneous vs. Heterogeneous partitions

• Modeling
• Data Flow or Control Flow
• Graph Rewriting, Block based
• First-Order Functions (Map)
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Modeling Data Parallelism
• Data Flow, Graph Rewriting

• Static or Dynamic Examples:
Triana

Taverna
JOpera
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Modeling Data Parallelism
• Data Flow, First-Order Functions

Example:

Kepler
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Modeling Data Parallelism
• Control Flow, Graph Based

Examples:

Teuta

UML
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Modeling Data Parallelism
• Control Flow, Block Based

Examples:

WS-BPEL

AGWL

Karajan

GEL
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Overview
• Parallel Execution

• Simple Parallelism
• Data Parallelism

• Pipelined Execution
• Best Effort
• Blocking
• Buffered
• Superscalar
• Streaming
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Parallel Execution: Pipelined Execution
• Stream multiple data elements sequentially

through a sequence of tasks

1, 2, 3, …

1
2

3
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Modeling Pipelined Execution
• Syntax very similar, but semantics changes a lot!

• How to deal with non uniform task duration?
• Best Effort
• Blocking
• Buffering
• Superscalar
• Streaming
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Best Effort Pipelined Execution

• Drop data elements on pipeline collisions
• Advantages:

• Simplified implementation
• Some applications may tolerate data loss

• Problem:
• Downsampling is non deterministic
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Blocking Pipelined Execution

• Tasks are blocked if successors are busy
• Advantages:

• Avoid data loss in the pipeline
• Problem:

• Pipeline speed limited by slowest task
• Data may be lost before it enters the pipeline
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Buffered Pipelined Execution

• Tasks are decoupled by buffers
• Advantages:

• Collisions are prevented
• Best applied to tasks having variable speed

• Problem:
• Buffer capacity is limited (Blocking still needed)
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Superscalar Pipelined Execution

• If a task is busy, create another instance
• Advantage:

• Data loss avoided without blocking
• Problem:

• Data elements may overtake one another
• Where to enforce synchronization?
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Streaming Pipelined Execution

• Tasks exchange data while running
• Advantages:

• Suitable for a distributed (P2P) engine
• Problems:

• Shifts complexity from the workflow engine to the tasks
• Tasks exchange data while running
• Workflow/Task interface more complex
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Conclusions
 Applying parallel computing techniques to Grid

workflows has become a necessity for large scale
eScience applications.

 Not all Grid workflow languages/systems we surveyed
support all patterns:
 Simple Parallelism & Static Data Parallelism supported by all
 Dynamic Data Parallelism still a challenge (for some)
 Pipelining implemented with many different semantics

 Let us know how your Grid workflow language/tool
supports these patterns!
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