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Abstract

Web Services have become an integral part of workflow
orchestration in scientific applications and many tools used
by scientists including Kepler, Taverna and Triana incor-
porate Web Services. However orchestration of complex
workflows that involve services that exploit standards like
WS-Addressing or WS-Security are not easily managed by
these tools. Most complex use cases that involve ”add
on” service standards use implementation specific assump-
tions, and as a result, the services and workflow composers
become tightly coupled. This leads to stove-piped, non-
interoperable implementations. This paper describes an
effort to implement complex use cases that include asyn-
chronous messaging and WS-Security, for a large applica-
tion project called LEAD, while maintaining standard con-
formance and composer simplicity. The primary contribu-
tion of the paper is design of a Mediator and a generic Web
Service actor that allow the addition of new Web Service
standards to services in a workflow, without the need to
make the workflow composer or enactor explicitly aware
that these standards are being used. These concepts are
demonstrated by an implementation that allows large work-
flows to be constructed using two different scientific work-
flow systems that were not designed with these extensions in
mind.

1. Introduction

Web Services are increasingly being used in workflow
management for large scientific applications. This is due
in part because of the transformation of Grid computing
standards to a service oriented architecture model and be-
cause Web Services based workflow models like BPEL [8]
are becoming de-facto standards in the commercial sector.
Many e-science workflow tools including Kepler [6], Tav-
erna [29], and Triana [30] use Web Services as components.
This growing pervasiveness of Web Service components in

scientific applications is drawing attention to the need for
interoperability between the tools used to manage work-
flows. Unfortunately, the Web Service specification stack is
growing at a rate that makes it difficult for some workflow
tools to use the latest Web Service concepts. In this paper
we explore this problem and describe several approaches to
simplifying the burden on the workflow systems.

The Web Services specifications could be grouped in
to two categories. The basic specifications, SOAP [13],
WSDL [16] and UDDI [17], define underline infrastruc-
ture for Web Services. The second category consists of so
called Web Service Extensions (WS-Extensions), which de-
fine add-on services like messaging, security, and transac-
tions. For the sake of clarity we label Web Services based
on first category as simple Web Services and Web Services
based on both categories as complex Web Services. Even
though research on scientific workflows has focused on sup-
port for the first category of specifications, support for the
second category is limited.

Clearly, certain features such as security and messaging
are essential for most real world workflows. However ow-
ing to lack of support for Web Service Extensions, com-
plex use cases have been implemented using non-standard
ad-hoc approaches. The defining characteristic of those ap-
proaches are the existence of mutual understanding between
service providers and workflows composers. Even though
they solved the problem at hand, the composer and the ser-
vices become tightly coupled, and they are not interoperable
when complex Web Services are involved.

In this paper we present our effort to realize use cases
form the NSF Linked Environment for Atmospheric Dis-
covery (LEAD) Project [20] using a variety of different
tools, while preserving a loosely coupled link between com-
poser and services. Our goal is to allow the user to pick any
workflow composer and enactor they feel most comfortable
with, without having to deploy a unique set of services for
each tool. We present over experiences and observations,
and discuss their applicability in enabling WS-Extensions
for scientific Workflows.



The Remainder of the paper is organized as follows. In
the next section we present a discussion on orchestration of
complex Web Services. Sections 3 discuss realizations of
LEAD use cases, and next two sections (4,5) discuss imple-
mentation of use cases in two workflow composers, Kepler
and Taverna. Section 6 presents related work and section 7
concludes the discussion with conclusions and future work.

2. Web Service and Orchestration

Simple Web Services support in scientific workflows has
been explored thoroughly by previous research [6], [29],
[30], [19]. Among scientific workflow composers Kepler,
Taverna, Triana [30] and Pegasus [19] provide support for
generic Web Services as well as their respective applica-
tion domain specific Services. Enabling Web Services by
providing a generic Web Service actor is the universal ap-
proach used by those efforts. Even though the implementa-
tion details very, each provides a generic Web Service actor
or equivalent component that handles Web Services. These
components can be configured by providing a WSDL de-
scription with related meta-data and the component become
a proxy for the service represented by the given WSDL de-
scription. The resulting model supports any simple Web
Service and scientists can orchestrate a Web Service with
limited knowledge about underline technologies.

We will discuss the generic Web Service actor in greater
detail in the sections 3, 4, and 5 of the paper. In this sec-
tion we present Web Service orchestration in general. Even
though we do not claim a comprehensive discussion on the
subject, we will present few important observations and dis-
cuss specific detail regarding WS-Addressing [11] and WS-
Security [26] (authentication and authorization).

To simplify the discussion we break Web Service orches-
tration in to two topics, orchestration of Simple Web Ser-
vices and Complex Web Services. Typically a workflow is
represented by a graph of independent components and a
workflow execution is a conditional traversal on the graph.
Each component accepts a set of inputs and produces set of
outputs. Workflow composers define an abstract representa-
tion for components of workflow and provide specific com-
ponent implementations for specific tasks. Bowers and Lu-
dascher [10] provide a detailed discussion related to com-
ponent base scientific workflow modeling. From this point
onward we use their term Actor to mean a component that
act as a building block for composition. Actors may provide
local as well as distributed tasks. In the distributed category
Web Service based Actors are important because they allow
services from remote systems to be present in a one work-
flow.

2.1 Orchestrating Simple Web Services

The Web Services standards define WSDL, a machine
readable and interoperable Service description. Service
providers write WSDL descriptions for their services and
make them available to service requesters. Owing to the
machine readable nature of descriptions there are tools
which can simplify Web Service invocation to a great ex-
tent. Using this architecture it is possible to develop a
generic Web Service actor that would accept a WSDL doc-
ument together with information to locate a specific opera-
tion and configure itself to invoke a Web Service in scien-
tist’s behalf. Such an Actor acts as a proxy that accepts in-
puts, performs a Web Services invocation and produces out-
puts. Better still such actor could handle any Web Service,
thus expanding the reach of scientists to the entire Web.

For an example let us consider a meteorologist who need
to perform an experiment that can only be done at university
A. Let us assume university A has provided a Web Service
to perform the experiment and publishes a description of the
Service. To use this service the meteorologist could add the
generic Web Service Actor to his workflow, and configure
the Actor by filling a pop up menu with the values published
by university A. One of the values will be a WSDL URL and
another will be an operation name. The configuration adds
input and output ports to the actor according to the WSDL
descriptions and, once the configuration is done, the Mete-
orologist may use it as any other actor. Once the workflow
is executed, the Web Service actor is invoked by the work-
flow composer and in turn the actor does a real Web Service
invocation and returns the results. With this architecture the
distributed nature of the Actor’s operation is opaque to the
meteorologist.

Our example brings in to light a very important charac-
teristic of scientific workflow orchestration. Even though
the scientist is invoking Web Services, there is no need for
him to understand the details of how it works. Scientist’s
composer can process the machine readable service descrip-
tions and handles the complexities of Web Services in his
behalf.

As far as simple Web Services are concerned, the pri-
mary challenge is the need for dynamic Web Service invo-
cations at run time. This is because the WSDL description
is made available only at the runtime and all the processing
should be done dynamically. Typically Web Service mid-
dleware uses code generation to generate stubs from WSDL
descriptions. Therefore Web Service actors often use code
generation, runtime compilation, followed by dynamic in-
vocation or Dynamic Invocation Interface (DII) of Web Ser-
vices. The former method is used by Triana and latter is
used by Kepler and Taverna.



2.2 Orchestrating Complex Web Services

With the techniques to orchestrate simple Web Services
established, to understand their basic limitations and the
need for complex Web Services, let us return to our me-
teorologist example.

Assuming the service provide by University A performs
a huge simulation that takes two days to complete, this sce-
nario require asynchronous interactions to avoid HTTP con-
nection timeouts. Asynchrony requires a service requester
to provide a return address to the service provider, which
will be used to send the response Message. This address
can be transferred as the first argument of the request. How-
ever with this approach both parties are operating via a pri-
vate agreement and we have lost interoperability at the Web
Services level. Similarly University A can achieve security
using a private protocol which works as long as both sides
have a private agreement.

On the other hand Web Services can achieve both these
capabilities and many others while maintaining interoper-
ability. For an example the return address can be conveyed
with WS-Addressing and security can be implemented us-
ing WS-Security. In General to preserve loosely coupled
nature between the service provider and requester all the in-
formation should be shared using corresponding Web Ser-
vice standards.

However, following a standard solves only part of the
problem at hand. For an instance we did not discuss how
both parties know that security is required. If that infor-
mation is conveyed without using a Web Service standards
that implies there is a private understanding, which is unde-
sirable. This can be avoided using WS-Policy [12]. Univer-
sity A could use WS-Policy assertions inside the Service’s
WSDL description to convey that the security is needed and
the nature of the expected request. The properly configured
composer, without intervention from the scientist, would
conclude from WSDL description that the service provider
expects security and adds security information to the mes-
sage.

To understand how Web Service architecture can be used
in scientific workflows, we should look at the Web Service
extensions in detail. Based on functionalities provided by
each Web Service extensions we observe three categories of
Web Service extensions, service description, non-functional
and functional extensions.

Two extensions to Service descriptions, WS-Policy and
WS-Metadata Exchange [9] define the mechanism by which
both parties can express and negotiate the policies that gov-
ern the interactions.

Non-functional extensions like WS-Reliable Mes-
saging [22], WS-Transaction [18], WS-Security, WS-
SecureConversation [23] and WS-Trust [24] provide add-
on services to the communication channel between Service

requester and provider. They address a property of the com-
munication channel and, when middleware on the both side
can handle extensions, neither requester nor provider need
to be aware of the fact that the extensions are enabled.

Functional extensions like WSRF [31] provide features
for the user. WSRF provide support for stateful Web Ser-
vices and it is a feature for the Web Service user and not
a property of the channel. As a result specifications at this
level can not be made transparent to the user.

The difference between second and third set of specifica-
tions is crucial as they need to be handled differently within
the workflow composer. In the most abstract view, handling
a complex Web Services can be broken down to following
tasks.

1. Administrator of the scientist’s computing environ-
ment will configure the environment with the suitable
parameters. This is a one time process and the need for
knowledgeable person can be justified.

2. Scientist will configure the Web Service actor by pro-
viding WSDL, service, port and an operation.

3. From WS-policy descriptions embedded in the WSDL
document the Web Service actor deduces features that
should be enabled in order to invoke the Web Service.

4. If the feature is a non-functional extension, it will be
handled transparently using the configuration from the
scientist’s environment.

5. If the feature is a functional extension, it becomes part
of the users programming model (e.g. Stateful nature
when WSRF is available). The composer must make it
explicit to the user and give user a opportunity to fine
tune it.

6. The actor invokes the Web Service and gets the results.

7. The actor provides the results back to the workflow
composer.

Web Service middleware supports WS-Extensions as
modules that can be associated with a given Service. By
implementing a Web Service actor that can bind and con-
figure those modules we could provide support for those
extensions. We recognize two challenges that should be ad-
dressed to enable a given Web Service Extension.

1. Define the behavior of the extension inside a scientific
workflow.

2. Configure the WS-Extension and enforce it in service
invocation



Firstly the behavior, or how extension can be used in-
side a scientific workflow, can be usually derived from use
cases in Web Services. However in some instances scien-
tific workflows may impose special considerations.

Enabling the WS-Policy and WS-Metadata Exchange
means the actor can configure other extensions according
to the policies of the service provider. The policies can be
specified in the WSDL description, WS-Addressing End-
point Reference, or negotiated at the invocation time using
WS-Metadata Exchange. The actor should process the poli-
cies and decide on the policy alternative for the current in-
teraction and configure other extensions accordingly.

Web Services Security consists of three main specifica-
tions WS-Security, WS-SecureConversation and WS-Trust.
The security can be enabled by enabling and configuring
the WS-Security implementation based on the Service pol-
icy description. Depend on the policy description the actor
may need to contact WS-SecureConversation or WS-Trust
endpoints to obtain derived keys or security tokens that are
used to configure WS-Security implementation. The secu-
rity policy descriptions are defined by the WS-Security Pol-
icy Specification [27].

To provide reliable messaging support the actor should
enable and configure a reliable messaging implementation
based on the policy description. The configuration of the
module is available from the policy description and, in their
absence, default values can be used.

Secondly it is duty of the Web Service actor to config-
ure WS-Extensions and enforce them in service invocations.
The configuration of extensions requires different informa-
tion and the most pragmatic solution to this problem is to
load the information form the environment of the scientist.
Some of these, such as identity as defined by X.509 cre-
dentials, are already available as part of the scientist’s en-
vironment, and for others we have to define representations
for that information in the environment. The problem of lo-
cating this information should be discussed in case by case
basis.

Typically to store a configured actor, workflow composer
need only to store the end point URL of the service and
the operation the actor represents. Consequently to store a
workflow, a composer stores the actors in the workflow and
their interactions. Web Service middleware is configured
dynamically when the workflow is loaded and as a result if
the service policies are changed after the workflow is com-
posed, the composer can apply the changes by reloading
the workflow from the composer, which would re-configure
Web Service middleware according to the new service po-
lices.

As far as our work is concerned we have chosen asyn-
chronous messaging, authentication and authorization as
the extensions we need to support based on LEAD use
cases and left definition of other extensions as future work.

The next section presents implemented extensions, WS-
Addressing and WS-Security in detail.

2.3 Synchronous and Asynchronous inter-
actions

The following discussion is based on the assumption that
WS-Addressing is supported by the service provider. Ac-
cording to the Web Service architecture extensions like se-
curity can be optional and a service provider may choose
not to support it. However Addressing holds together most
of the other specifications, therefore we do not believe that
it is practical to implement support for complex Web Ser-
vices without addressing.

According to the Web Service architecture, the nature
of an interaction is decided by service requester. We can
visualize this scenario using a lawyer who provides legal
advice though the phone. The seeker of advice may wait
on the phone for a response or provide a number to call
back when the response is available, and usually the lawyer
supports both protocols. Similarly, a service requester can
uses WS-Addressing to inform the server that he is waiting
for the response or to instruct the server to send the response
to a given location.

The workflow composers always play the role of service
requester and, as a result, they are free to decide on the na-
ture of the interaction. This decision shall be based on a
number of factors. For an example, asynchronous invoca-
tions are usually used with long running services. If most
of services in a workflow are long running, the workflow
composer may treat every service as asynchronous. Other-
wise the decision can be left to the user as a configuration
parameter.

Synchronous and asynchronous behavior is enforced us-
ing the WS-Addressing parameters Reply-To and Fault-To.
If the Reply-To value is absent (or an anonymous URL),
the response is sent back through the return path of the re-
quest transport connection, or else the response will be sent
to the Reply-To URL. In case of an error, the error message
should be sent to the Fault-To property. Typically a service
requester initiating an asynchronous interaction starts a re-
ceiver for incoming SOAP messages and directs the Reply-
To and Fault-To properties to that receiver.

In a synchronous interaction the response and request
messages are correlated by fact that they travel in the
same transport connection. However message correlation
in a asynchronous interaction requires additional informa-
tion, and the WS-Addressing properties Message-ID and
Relates-To provide that information.



2.4 Security

When the security Extension is enabled, the composer
should provide authentication, authorization and confiden-
tiality based on policies of the service provider. WS-
Security defines basic constructs to achieve them with Web
Services.

The Web Service security mechanisms are based on gen-
eral security use cases and operate with the XML based Web
Service representations of the usual security entities. As a
result there is a one to one correspondence between param-
eters in WS-Security and parameters in the security model
of the scientist’s environment. Using this correspondence it
is straightforward to parameterize the WS-Security module
in a workflow composer using the scientist’s environment.

For an example GRID environment, where most of the
scientific workflows will be running, provides a standard
way to find security credentials from scientist’s environ-
ment. Those security credentials provide sufficient informa-
tion to configure WS-Security to operate within scientist’s
workflow composer.

For authentication, messages are signed with user’s pri-
vate key and service provider can verify the authenticity us-
ing user’s public key. Similarly both the authorization and
confidentiality can work with the information included in
GRID credentials. There are additional parameters to be
shared, such as the supported security algorithms and the
parts of a SOAP message that need to signed or encrypted.
Technically that information should be shared through WS-
Policy but in absence of policy information, it can be pro-
vided as part of the configuration. The composer could pick
default values while user can override them in need. On the
whole typical scientist’s environment contains sufficient in-
formation to parameterize WS-Security to operate in work-
flow composer.

3. Implementing Enhancements

As far as simple Web Services are concerned, interac-
tions between composer and Web Service middleware are
limited to converting input and output parameters from one
domain to the other. But once the complex Web Services
enter the picture, a substantial amount of configuration in-
formation should be transferred between domains and their
mappings are no longer straight forward. The security cre-
dential transfer from the user’s environment to the Web Ser-
vice middleware framework is a good example of such com-
plex mapping.

Our architecture introduces mediation tools that man-
age information flow and communication between two do-
mains. The Web Services side is implemented using Axis2
[4] considering support for WS-Security, WS-Addressing
and ongoing efforts to support other WS-Extension. We

believe our architecture can be extended to capture other
WS-Extensions as they become available. We have ex-
tended two widely used workflow composers, Kepler and
Taverna to orchestrate complex Web Service workflows that
uses asynchronous interactions, authentication and autho-
rization. We have made use of extensibility of each com-
poser to develop generic Web Service Actors for each.

Implementation of the generic Web Service actor could
be broken down to two parts, the mediation tools and the
composer specific actor implementation. The rest of this
section will discuss the mediation tools and the composer
specific details are discussed in sections 4, 5.

3.1 LEAD Usecases

Before we present the architecture, let us discuss a typ-
ical LEAD use case. LEAD services operate in GRID en-
vironment and wrap scientific tools as Web Services. The
LEAD environment provides special services, and among
them a Capability Manager Service and a Message Box ser-
vice are used by the scenario we present.

In a typical use case, a scientist will log in to the Web
Portal provided by LEAD, and search for services in the
LEAD Resource catalog. He could identify services of in-
terest and obtain WSDL description for each service. The
scientist will configure a generic Web Service Actor per
each service and compose a workflow using the actors.

When the workflow is executed, the composer should ob-
tain capability tokens from the capability manager and in-
clude then in the request Message. The capability tokens
are signed by the service provider and they authorize users
to use services. Most of the services have long execution
times and the asynchronous Messaging is used. As we wrap
scientific workflows we only need support for simple type
parameters in services orchestrated in the composer.

3.2 Generic Web Service Actor

LEAD use cases are supported by implementing a Web
Service Actor that support asynchronous interactions, au-
thentication and authorization. The execution and commu-
nication between the actors are managed by the composer
they reside in. The heart of each actor is above mentioned
Mediation tools, which perform mediation between com-
poser and Web Services middleware.

This section presents basic concepts behind the actor and
composer specific details will be presented in sections 4
and 5. The Web Service Actor is initialized at composer
start up and become available through actor libraries of the
composer. While composing a workflow, the scientist adds
one or more actors to the workflow, and each addition will
create a new actor instance. Each Actor is configured by
providing a WSDL URL and an operation name, where they



are handed over to mediation tools which configure both the
actor and Web Service middleware.

A Web Service actor in a workflow is directly mapped
to a WSDL operation binding. The input and output mes-
sages of the WSDL operation correspond to input and out-
put ports of the Actor. The Actor expands first level of the
XML element referenced by each message, and uses first
level children to derive input and out put ports. Our present
implementation only supports simple types as parameters.

The configured Actor can be used in workflow compo-
sition. Once executed the actor performs a Web Service
invocation using the inputs made available via input ports
of the Actor. The Actor waits for results of the invocation
and broadcast the results to the output ports.

3.3 Asynchrony

The Actor can be configured to do both synchronous and
asynchronous invocations. However since the LEAD ser-
vices are typically long running by nature, the actor is con-
figured for asynchronous mode by default. We use WS-
Addressing to convey addressing and correlations informa-
tion between two parties.

Asynchronous mode requires a listener inside the com-
poser to receive messages. We could have used the Axis2
listener that automatically starts when Axis2 asynchronous
mode is enabled. But that listener is managed by Axis2, and
in our scenario this could cause a number of listeners to be
started and shut down during the lifetime of a one workflow.

To remedy this, we use the Message Box service pro-
vided by LEAD environment. The Message Box is sim-
ilar to a typical postal box, where each user can create his
own personal Message Box and all the messages that are re-
ceived by the Message Box are stored and reproduced when
the owner of the Message Box wants to collect messages.

When a workflow composer is started the composer cre-
ates a Message Box which is a shared among all Actor in-
stances. The Message box creates a new Message Puller, a
separate thread that keeps polling the Message Box for new
Messages. We use one-way API of Axis2 for Web Service
invocation. With the receiving mechanism in place, asyn-
chronous interaction is achieved using following steps.

1. Add a Message-ID property to the request Message.

2. Add address of the Message Box as the Reply-To and
Fault-To properties of the request message.

3. Register a callback that includes a reference to the out-
put ports of the current actor with the message puller.
The Message-ID value is used as the key for the call-
back.

When a response Message is received, according to the
WS-Addressing it must have a Relates-To property equal

Figure 1. Mediation Architecture

to the Message-ID of the request message. The Message
Puller looks up the callback using the Relates-To value and
invokes the callback providing response message as a pa-
rameter. The callback will parse the message and broadcast
the results to the output ports.

Figure 1 shows the message path between different com-
ponents of the model. The superscripts on the lines cor-
respond to the bracketed numbers in the figure. When the
Actor is executed 1, it registers a callback with the message
puller 2 and sends a SOAP message to the service 3. Ac-
cording to WS-Addressing parameters service responds to
the Message Box Service 4 and the response is stored in the
Message Box. When message puller queries the Message
box the next time it will collect the message 5 and invoke the
callback which in turn send the results to the output channel
of the workflow 6.

3.4 Authentication and Authorization

Authentication and authorization is built on top of WS-
Security and the XPOLA [21] Authorization infrastructure.
Since the composer operates inside a GRID environment
and GRID credentials are used to configure WS-Security.

Authentication is achieved using public key infrastruc-
ture. The Composer signs the SOAP messages with the pri-
vate key of the scientist who uses the workflow composer
and service provider verifies the signature of the SOAP
message and establishes the authenticity of the Service Re-
quester (The workflow composer). The WS-Security stan-
dard enforces the standards and ensures interoperability.

Authorization is implemented using XPOLA authoriza-
tion framework. The scenario includes four parties, and the
trust is represented with SAML capability tokens issued by
service provider. As shown by the Figure 2, for each le-
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Figure 2. Authorization Model

gitimate user, service provider publishes a capability token
to capability manager service provided by XPOLA. The ca-
pability manager service is a registry of capability tokens
for each user. A Capability token includes the distinguished
name of the authorized scientist and the operations he is
allowed to access and is signed by the service provider’s
private key to establish the trust.

For each request, workflow composer signs the message
with scientist’s private key, obtains his capability tokens
from capability manager and adds the capability token as
a security Header. The Service’s container (which may or
may not be the service provider itself) compares the identity
given in the capability token with the identity of the Service
Requester (obtained from the request signature) and if both
are equal authorizes the Service requester.

Our security implementation is greatly eased by the
GRID Security infrastructure (GSI) [28]. We use Cog
JGlobus [1] Toolkit to extract Globus credentials from sci-
entist’s environment and the Apache WS-Security imple-
mentation, WSS4J [5] is used to provide WS-Security sup-
port for Web Service middleware. WSS4J obtain the cre-
dentials from a Java key store by default and can not be
used out of the box. We use the WSS4J extension mecha-
nisms to override the configuration to load the credentials
from the GRID environment. We enable WSS4J by adding
WSS4J based security module to Axis2. Using WSS4J the
actor signs the request message, obtain the capability tokens
and add them as a security header.

To summarize, we have enabled asynchrony, authentica-
tion and authorization support for the workflow composer
while preserving a loose coupling between the Services and
composer. The service provider and composer need not
have any understanding beyond the principles of Web Ser-
vices standards conformance. We use standards WSDL and

Figure 3. Kepler LEAD Actor

SOAP for Web Service support, WS-Addressing to impose
asynchronous interactions, WS-Security for message signa-
tures and SAML [3] for capability tokens.

4. Extending Kepler

Kepler is an extension to Ptolemy II project [2] which
was developed initially for signal processing. Ptolemy is a
Java based component assembly framework builds on top
of generic components called actors. Ptolemy defines an
actor, the input and output ports, their life cycles and inter-
actions. The actors can operate in different execution do-
mains and executions behave accordingly. Kepler includes
actors for RPC Web Services and message base Web Ser-
vices. However they can not be used out of the box to or-
chestrate LEAD services as the latter depend on Web Ser-
vices Extensions. To circumvent this issue we extended Ke-
pler by introducing a new generic Web Service actor, which
we named LEAD Actor.

The LEAD actor is an enhanced generic Web Service
Actor that acts as a proxy for any Web Service. We develop
our actor for the Process Networks (PN) execution domain
[14], where actors are executed in parallel threads and are
able to responds to events. We do not present the implemen-
tation details about the LEAD actor, but Hylands et al [25]
provide comprehensive details about how to extend Ptolemy
using actors.

User who wants to compose a workflow that includes a
LEAD Actor can search actor libraries and add the actor
to the workflow by dragging and dropping the actor to the



workflow. This process will create a new instance of the
LEAD actor and add it to the workflow. This initial actor
does not have any input or our put ports, and can be con-
figured though the menu available by right clicking the ac-
tor. User should provide WSDL URL, operation name, and
other optional parameters. Once the information is provided
the actor configures itself by adding input and output ports
according to the WSDL description. Thus configured, the
actor can be used to compose workflows.

A workflow may have more than one instance of the
LEAD Actor. The composition is done by connecting the
input and output components of the various actors with each
other. When the workflow is executed each actor is started
in a separate thread and each blocks their execution while
reading inputs from the input ports. Once the inputs are
available, each LEAD actor will use the mediation tools de-
scribed above to construct a SOAP message and invoke the
Web Services. When the results are available, they are pro-
cessed and broadcast to the output ports.

Our actor depends only on the services provided by
Ptolemy and do not have any adverse effort on the architec-
ture of Kepler. Web Service invocations use the streaming
capabilities of Axis2 and therefore we expect a slight per-
formance improvement on simple Web Service invocations.
On the other hand enabling the extensions, specifically Se-
curity has introduced overheads. But with WS-Security it is
unavoidable and we have a trade off between functionality
and performance. However, considering the long running
nature of LEAD use cases, the impact from the overhead is
minimal.

5. Extending Taverna

Taverna workflow consists of components called Proces-
sors. A Processor consists of a name, a set of inputs, a set of
outputs. Its function is defined as a transformation between
the inputs and outputs. The Scufl workbench [29] provides
a view for composition and execution of the Processors.

Taverna has a WSDL Processor which is a generic Web
Service Processor implementation based on Apache Axis.
In order to extend the composer for Web Service extensions
we develop a new Generic Web Service Processor based on
Axis2. As we discussed above, both Kepler and Taverna
share the Mediation tools that provide a generic Web Ser-
vice interface for workflow composers to handle the com-
plexities of both Web Services and Web Service extensions.

The new processor can be installed by adding it in tav-
erna.properties file and it will add new scavenger to the Tav-
erna ”Available Services Tab”, which act as a factory for
our Processor. When the scientist right click on the Avail-
able processors node of the ”Available Services” window,
the menu shown by the diagram 4 will appear. To orches-
trate a LEAD Web Service the user should select the ”Add

Figure 4. Taverna with LEAD Processor
Added

new LEAD scavenger” option. This will create a scavenger
which will fetch the WSDL and create a processor for each
operation described in the WSDL file. Each Processor will
have an input output ports as described by the correspond-
ing WSDL Operation. The composition is done by adding
processor(s) corresponds to the operations of interests to the
Advanced Model Explorer and connecting them with data
and control links.

When workflow is executed and execution reaches a
LEAD Processor, an associated invocation task (LEAD ex-
ecution Task) is called. The Execution task uses the Medi-
ation tools to construct request SOAP message and invoke
Web Services. The response to the Web Service invocation
is processed and broadcast to the output ports.

As far as the Taverna is concerned the LEAD Proces-
sor is yet another processor, and enjoys the availability of
all services available to a Processor inside Taverna. As it
is based on the Taverna extension mechanisms, it does not
have any adverse effect on the Taverna architecture. The
Performance of the new processor is expected to have the
same concerns as the Kepler actor.

6. Related Work

There are number of workflow systems orchestrating sci-
entific workflows [32] and Grid workflows [33]. In section
2 we discussed the generic Web Service orchestration sup-
port provided by scientific workflow composers like Kepler,



Taverna. To best of our knowledge none of them provide
WS-Addressing and WS-Security support for generic Web
Services.

Business workflow composition is an important area of
related work to the topic. Charfi and Mezini [15] provide
a discussion on integrating WS-Security and related WS-
Policy consideration to Business workflow. In contrast to
the actor based approach, where we handle WS-Extensions
at the actor level, their implementation is more tightly inte-
grated with BPEL container.

In the area of GRID workflows, integrating GSI secu-
rity infrastructure with the GRID service orchestration is
of high importance. Amnuaykanjanasin and Nupairoj [7]
discuss an approach to handle secure GRID services with
BPEL. Their approach generated a security enabled proxy
service for each secure Web Service and BPEL engine or-
chestrate the proxy service instead of the original service,
which would in turn do the real invocation. The Actor based
approach and this have some similarity, especially if we
think about the actor as a proxy. However explicit proxy
service generation could add overhead and complexity.

In contrast to the above stated approaches, in this paper
we discuss an actor based approach that uses architecture
and the patterns provided by Web Services to handle addi-
tional considerations (e.g.security,asynchrony) in scientific
workflow orchestration, and make an effort to make them
transparent to the scientist.

7. Conclusions and Future work

In this paper, we have discussed enabling Web Service
extensions in scientific workflows. We discussed the rela-
tionship between orchestration and Web Service Extensions
and the need to address two basic concerns with respected to
each extension. First, how to define the behavior of each ex-
tension inside scientific workflows and second, how to pa-
rameterize the Web Service Extensions based on the work-
flow environment. We discussed mediation tools that bridge
the gap between current Web Service middleware and work-
flows, and we discussed the architectural details of media-
tion tools.

Finally we discussed extending two popular scientific
workflow composers to enable support for orchestration
with asynchrony, authentication and authorization. We be-
lieve that our effort to extend existing composers is a proof
of presented concepts. Furthermore by building on top of
proven implementations, we have make it easier to use them
in real world applications.

As future work we plan to expand our work to the other
Web Services Extensions as middleware for them becomes
available. Among them support for confidentiality in WS-
Security and support for WS-Policy are of highest interest.
Also WS-Reliable Messaging and WS-Transactions are an-

other interesting and challenging directions. Enabling WS-
Policy will be an important accomplishment as that will pro-
vide fundamental constructs to include information about
WS-Extensions with WSDL description, thus detaching the
user from the complexities of WS-Extensions.

Finally we want to restate our motivation to enable the
WS-Extensions for scientific workflows while preserving
standard conformance and simplicity of the composer op-
eration, thus making services and the composers interoper-
able on next level. We believe this paper laid ground work
for truly interoperable Web Services and workflow tools for
scientific applications.
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