On Optimization of Scientific Workflows to Support Streaming Applications in Distributed Network Environments

Qishi Wu, Yi Gu, Xukang Lu

Mengxia Zhu, Patrick Brown

Wuyin Lin, Yangang Liu

University of Memphis {qishiwu,yigu,xlv}@memphis.edu Southern Illinois University {mzhu, patiek}@cs.siu.edu Brookhaven National Laboratory {wlin,lyg}@bnl.gov

The 5th Workshop on Workflows in Support of Large-Scale Science (WORKS10)

In conjunction with SC 2010, New Orleans, November 14, 2010

Sponsored by Department of Energy

1

Outline

- Background
- Mathematical Models and Problem Formulation
- Algorithm Design for MFR
- System Development SWAMP
- Performance Evaluation
- Conclusion and Future Work

Applications structured as computing workflows

- Simple case \rightarrow Linear pipeline (a special case of DAG)
- Resources of different types
 - Deployed at various research institutes and laboratories
 - Accessed through wide-area network connections
- Challenges
 - Optimize application performance
 - Frame rate (throughput), end-to-end delay, reliability, etc.
 - Meet multifarious user requirements
 - Remote visualization, online computational monitoring and steering
 - Fully utilize distributed system and network resources
 - Automate computing process

Mathematical Models and Problem Formulation

Recv data Z_{i-1}

Computationa

complexity

 V_h

ink bandwidth b{h}

Min link delay $d_{\rm b}$

Cost models

- General DAG-structured workflow mapping A distributed computing workflow application
 - DAG-structured $G_w = (V_w, E_w) \mid V_w \mid = m$
 - Vertices represent computing modules $W_0, W_1, \cdots, W_{m-1}$
 - Directed edges represent computing dependency
- A heterogeneous computer network
 - > An arbitrary weighted graph $G_c = (V_c, E_c) |V_c| = n$
 - > Nodes V_0, V_1, \dots, V_{n-1} interconnected by directed communication links
- Goal: map modules to computer nodes to achieve Maximum Frame Rate (MFR) for streaming applications
 - > Frame Rate (FR) or throughput, i.e. the inverse of the global Bottleneck (BN) of the workflow

Send data Z_i

Node

Processir power

Module execution time:Data tran
$$T_{\text{exec}}(w,v) = \sum_{t=t_w^s}^{t_w^f} \frac{\alpha(t) \cdot \delta_w(t)}{p}$$
, where $T_{\text{tran}}(e,l) = \sum_{t=t_w^f} T_{\text{tran}}(e,l) = \sum_{t=t_w^f} \delta_w(t)$ $\alpha(t) = \sum_{w \in V_w: (t_w^f - t)(t - t_w^s) \ge 0} x_{wv}, \ \lambda_w(z_w) = \sum_{t=t_w^s} \delta_w(t)$ $\beta(t) = \sum_{e \in E_w: (t_w^f - t)(t - t_w^s) \ge 0} x_{wv}$

Data transfer time:

$$T_{\text{tran}}(e,l) = \sum_{t=t_e^s}^{t_e^f} \frac{\beta(t) \cdot \delta_e(t)}{b} + d, \text{ where}$$

$$\beta(t) = \sum_{e \in E_w: (t_e^f - t)(t - t_e^s) \ge 0} y_{el}, \ z_e = \sum_{t=t_e^s}^{t_e^f} \delta_e(t)$$

Objective function

Maximize frame rate determined by the global Bottleneck Time (BT) to achieve smooth dataflow for streaming applications

$$T_{\rm BT}(G_w \text{ mapped to } G_c) = \max_{\substack{w_i \in V_w, e_{i,j} \in E_w \\ v_i \cap E'_c, l_{j',k'} \in E_c}} \binom{T_{\rm exec}(w_i, v_{i'})}{T_{\rm tran}(e_{j,k}, l_{j',k'})} = \max_{\substack{w_i \in V_w, e_{i,j} \in E_w \\ v_i \cap E'_c, l_{j',k'} \in E_c}} \binom{\sum_{t=t_{w_i}}^{\infty} \frac{\alpha_i(t) \cdot \delta_{w_i}(t)}{p_{i'}}}{\sum_{t=t_{e_{j,k}}}^{\infty} \frac{\beta_{j,k}(t) \cdot \delta_{e_{j,k}}(t)}{b_{j',k'}}} + d_{j',k'}$$

$$\max_{\text{all possible mappings}} (\frac{1}{T_{\rm BT}})$$
The UNIVERSITY OF
MEMPHIS.

Algorithm Design

- MFR mapping scheme ---- Layeroriented DP-based algorithm (LDP)
 - Topologically sort the computing workflow
 - Map it to the network layer-by-layer using a DP-based procedure
 - Select the best mapping in the current column which is used to decide the mapping for succeeding modules in the later columns

Scientific Workflow Automation and Management Platform (SWAMP)

- Provide a unified web-based user interface to automate and manage workflow executions
- Support visual construction of abstract workflows
 - A generic web-based graphical toolkit
 - The GUI of Kepler
- Feature a special network-aware workflow mapper
 - Automatically map abstract workflows to various networks such as ESG/OSG
 - Condor, PBS, and LSF
 - Achieve optimal end-to-end performance (MFR) based on real-time network status measurements
- Interact with a variety of data movement services
 - GridFTP (already incorporated)
 - SRM, TeraPaths, RFT, SRB, OSCARS, etc. (in plan)

SWAMP Framework

Web Interface

- Users interact exclusively with SWAMP via the web interface
 - Workflow Generation
 - Workflow Selection and Dispatch
 - Workflow Monitor and Result Display
- Web Interface Framework Design
 - A Model-View-Controller (MVC) architecture
 - > HTML
 - > CSS
 - JavaScript
 - PHP using Zend Framework 1.9 and PHP 5

Workflow Generation

- Involved components
 - Kepler Manager
 - Web Interface
 - Web Server Manager
 - Web Server CGI
- Workflow composition
 - An intuitive way
- Abstract workflows
- Kepler Web Parameter 1 Serve Parameter 2 Parameter 3 Web erable Paramet Server CGI Web Server Manager DAG & Submit File Kepler Manager (XML to DAG) Workflow Mappe Manager Network and System Info Management Workflow Repository
- Modules are independent of underlying resources

11

Interactive composition of small & simple workflows

- A generic web-based graphical toolkit
- The GUI of Kepler

Automatic generation of large & complex workflows

– Programs/Web Services

- Combine parameters in a way specified by scientists
- Inputs to programs/Web Services are part of workflow descriptions
 - Input files
 - Executables and their parameters
 - Output files produced by executables
- Scale well with different applications
- Two use cases
 - Climate Modeling (community)
 - > SNS

A use case: Climate Modeling at BNL

NCAR single column CAM (SCAM)

- Facilitate the development and evaluation of climate model parameterizations for the NCAR Community Atmosphere Model (CAM)
- For each combination of available physics packages, data to be used, and experiment controls, we treat it as a dispatch of one SCAM workflow

SCAM Workflow

- Perform an SCAM model experiment (the scam2nc module) to generate simulated data
- Both model simulated data and observed data are used for postprocessing and visualization

Workflow Mapping

- Involved components
 - DAGMan Manager
 - Workflow Mapper
 - Workflow Repository
 - Network and System Info Management
- Need to discover
 - Available networking/ computing resources, data and executables
- Executable Workflows
 - Workflow modules are bound to specific computing resources
 - Data movements are specified

- Discovery of available data movement services
 - GridFTP (move huge global climate modeling data from A to B)
 - SRM, TeraPaths, RFT, SRB, OSCARS, etc.
- Discovery of available networking/computing resources
 - Query the Network and System Info Management component
 - Interact with the Network Weather Service (NWS), One-Way Active Measurement Protocol (OWAMP) and Bandwidth Control (BWCTL) to find out link delay and available link bandwidth network and predictions
 - Query information systems
 - Interact with Globus Monitoring and Discovery Service (MDS), OSG RSV, and others to find out the number of CPUs, CPU frequency, queuing length, available disk space, etc.
- Employs network-aware mapping scheme
 - Layer-oriented Dynamic Programming (LDP)

Workflow Execution

- Execution of executable workflows
 - Condor or Condor-G
 - Both use DAGMan to manage dependencies

Execution of executable workflows by Condor-G

Execution procedure of SWAMP in grid environments

Workflow Execution

Executable SCAM workflow

Workflow Display

- Workflow status display
 - Read Condor's logs to track status
 - Show real-time status through web interface
- Immediate visualization of results
- Different types of display

THE UNIVERSITY OF

- Graph
- Gallery
- Video

Data Provenance Tracking

- Data management is growing in complexity
- Data provenance
 - Manage information about how data were produced starting from its original history
 - Verify the correctness of simulation data
 - Debug and reproduce simulations
 - Track workflows and simulations

SWAMP stores provenance information

- Where computing modules were executed
- How long the execution took place
- Which files were used and generated
- Other task-level information

Performance Evaluation

Simulation results

MFR measurement among Greedy LDP, Greedy A*, Streamline and Greedy.

Prb	Prb Size	MFR (frames/sec)						
Idx	$m, E_w , n, E_c $	Greedy LDP	Greedy A*	Streamline	Greedy			
1	4,6,6,29	1.6925	1.0382	1.0382	1.0382			
2	6,10,10,86	1.7403	1.2506	1.3789	1.3789			
3	10,18,15,207	2.0003	1.5341	1.0001	1.3426			
4	13,24,20,376	2.0252	1.3707	1.0133	1.3716			
5	15,30,25,597	2.1408	1.4870	1.7367	1.5713			
6	19,36,28,753	1.3697	1.0280	1.1490	1.1374			
7	22,44,31,927	1.4748	1.1652	0.9467	0.9988			
8	26,50,35,1180	1.2914	1.0690	1.0377	0.7718			
9	30,62,40,1558	0.8936	0.7262	0.6962	0.7296			
10	35,70,45,1963	0.9047	0.6261	0.6210	0.6418			
11	38,73,47,2153	1.1613	0.7134	0.7057	0.6275			
12	40,78,50,2428	0.9284	0.7677	0.8082	0.7952			
13	45,96,60,3520	0.7790	0.4967	0.5930	0.5403			
14	50,102,65,4155	0.6432	0.3876	0.5698	0.5284			
15	55,124,70,4820	0.5953	0.4028	0.4478	0.4342			
16	60,240,75,5540	0.5273	0.3208	0.3217	0.3300			
17	75,369,90,7990	0.2954	0.1881	0.2061	0.1808			
18	80,420,100,9896	0.5616	0.3895	0.3371	0.3385			
19	90,500,150,22346	0.2132	0.1616	0.1628	0.1673			
20	100,660,200,39790	0.3285	0.2058	0.1859	0.2512			
21	120,680,220,48168	0.3647	0.2191	0.2687	0.2687			
22	150,720,250,66235	0.3756	0.2291	0.1941	0.3248			
23	165,850,280,78112	0.3241	0.1832	0.1899	0.2598			
24	180,1000,300,89695	0.2566	0.2021	0.1710	0.1820			
25	200,1200,500,249487	0.2859	0.1576	0.1576	0.1576			

MFR comparison between Greedy LDP and other three mapping algorithms.

$$Speedup = \left| \frac{MFR_{LDP} - MFR_{other}}{MFR_{other}} \right|$$

MFR Performance speedups of Greedy LDP over other three algorithms.

Experimental results using climate modeling workflow

- A distributed heterogeneous network testbed
 - 9 PC workstations at University of Memphis
 - > 3 PC workstations at Southern Illinois University at Carbondale
 - CPU frequency varies from 1.2 GHz to 3.4 GHz
 - Create an arbitrary network topology by configuring different firewall settings
 - Use "tc" command to allocate different bandwidth

Input data size for 10 SCAM experiments.

Idx. of prb. cases	1	2	3	4	5	6	7	8	9	10
No. of days	2	4	6	8	10	12	14	16	18	20

MFR comparison between Greedy LDP, Random, and Round Robin for climate modeling workflow in SWAMP

25

Conclusion and Future Work

- Constructed cost models for workflows and networks
- Proposed a layer-oriented LDP algorithm for MFR
- Developed a workflow management system SWAMP
 - A generic framework to support different applications in various network environments
 - A special network-aware workflow mapper
- Implemented a real-life workflow in SWAMP system
- Future work
 - Investigate more sophisticated and accurate cost models
 - Conduct more real-life workflow experiments in wide-area networks

