

Grid Workflow Efficient Enactment for Data Intensive Applications

Workflow-based comparison of two Distributed Computing Infrastructures

GWENDIA ANR-06-MDCA-009

http://gwendia.polytech.unice.fr

Objectives

 Evaluate performance of different Distributed Computing Infrastructures (DCIs): a production (European EGI – former EGEE) and a research (French G5K) infrastructure

Motivations

- Workflow-based applications can be easily ported to different DCIs (or simultaneously use different DCIs)
- DCIs hardware and middleware significantly differ
- Distributed computing performance is difficult to assess

Method

- Experiments-based: same workflow application executed on different DCIs
- Execution conditions aligned as much as possible
- Comparison criterions identification and measurement

Different DCI models

Grid Workflow Efficient Enactment for Data Intensive Applications

Infrastructures

- EGI: production, 250+ computing centers, 160k+ CPU cores, 10k+ users, world-scale, gLite middleware (batch-oriented)
- G5K: research, 9 sites, 5k+ CPU cores, 100's users, nationalscale, reconfigurable (any middleware), reservable resources

Resources usage

- EGI: production = permanent (yet variable) workload
 - SRM-compatible storage resources
 - Amount of resources never precisely known
 - WAN communications
 - High-end resources in well equipped computing centers
- G5K: research = higher workload variations
 - NFS access to disks
 - Controlled amount of resources
 - National WAN communication on a private high-performance network
 - 1-5 years old resources

Different DCI models

Grid Workflow Efficient Enactment for Data Intensive Applications

- Middleware
 - EGI: gLite
 - Batch-oriented computations
 - File servers with heavy compatibility front-ends
 - Scientific Linux (REHL-like) v4 or 5 OS
 - G5K: OAR resources reservation
 - Dedicated resources, any middleware
 - NFS servers site-wise, manual data transfer across sites (scp...)
 - Any OS system image

Heterogeneity

- All IA32/64-compatible CPUs
- Although significant hardware variations cause practical problems for OS images deployment

Workflow enactment

Grid Workflow Efficient Enactment for Data Intensive Applications

- Cardiac image segmenation workflow
 - 2 intialization stages (mhd2qc + ImgAndModelInit)
 - Multiple instances of the segmentation process (det3D4)

- Parameter sweep application (parameters-combinatorial)
 - Small-size: 2+12 segmentation instances (testing)
 - Medium-size: 2+200 segmentation instances (scale-up)
 - Large-size: 2+2080 segmentation instances (challenging)
- Same binaries ran on each infrastructure
 - Binaries compiled for SL4
 - SL4 OS image installed on G5K nodes (proved to be painful!)
- Fixed-size infrastructure
 - 54 (= 3 x 18) cores reserved for most experiments
- Experiments were reproduced 3 to 5 times
 - Compensate for inter-experiments variability
 - Results are given as average value +/- standard deviation
- Experiments were ran on a single site or on 3 sites
 - Both intra-site and WAN communications

Compare EGI and G5K performance in similar conditions

- Allocate same size infrastructure and run same workflows
- Measure makespan, data transfer time, activities execution time and idle time
 Pilots master
- DIANE pilots on EGI
 - Resource reservation
 - Pilots submitted to batch using GASW

7

- Pilots may fail (faulted, expired, killed by sysadmin, unreachable...)

Pilots used to reserve resources

- Need a fixed-number pool of pilots
- Over-provisioning to replace failed pilot without delay
- Submission of idle pilots until the needed number is available

54 resources reserved for experiment runs

- 70 to 90 pilots submitted for each experiment

Small-size runs

Grid Workflow Efficient Enactment for Data Intensive Applications

G5K (1 and 3 sites)

GWENDIA ANR-06-MDCA-009 WORKS'10 Workflow-based comparison of two DCIs

Medium-size runs

Features

- Batches of 54 concurrent tasks
- Desynchronization over time
- Input files caching
- DIET workflow decomposition strategy

Few task failures on EGI

Causing resubmission

Difference between 1 and 3 sites runs

- Little impact on EGI; more impact on G5K (e.g. data transfers)

• Makespan variability is higher on G5K than on EGI

No better reproducibility on G5K than on EGI using pilots

Large-size runs

2000

Jobs

11

- Features
 - Linear profile

Many failed experiments

- EGI: pilot lifetime limitations
- G5K: difficulty to proceed with reservations and platform failure

Reproducibility

- Higher on single site than on 3 sites with EGI
- Higher on 3 sites than on single site with G5K

Production (uncontrolled) Grid Workflow Efficient Enactment for Data Intensive Applications

- Greedy pilots allocation
 - No limitation to 54 pilots
 - ~30 sites
 - ~3% failures

Features

- Delayed start (time for first pilots to register)
- Sub-linear profile (more resources available)
- Diane's favorite heavy tail

Performance

- Comparable makespan as with controlled conditions (54 pilots)

- Difficulty to compare different DCIs performance
- Experiments-based performance measurement
 - Sensitive to the workflow properties (e.g. the workflow used features maximal data parallelism and no critical bottleneck activity)

Experimental setup

- Aligning execution conditions with pilot jobs + pilot population controller + single runtime
- Limited in scale

Infrastructure properties outlined

Difference in CPU performance, network topology and middleware

- A 54-nodes controlled infrastructure reaches makespans close to EGI knowing that:
 - Experiments on EGI have been run on large, reliable sites
 - < 5% error rate in all cases</p>
 - EGI can handle several concurrent users and experiments
 - Few failures are highly impacting makespan in production
- Reproducibility may be as good on EGI as on G5K under controlled condition
 - Feasibility of large-scale experiments on EGI