ISI Summer Internship Program: Apply by March 15

Join in groundbreaking research, working on impactful projects with our senior researchers.Read More

ISI News

USC ISI Researchers Receive Amazon Research Awards

Two researchers from the USC’s Information Science Institute (ISI) — Greg Ver Steeg and Xiang Ren — have received 2018 Amazon Research Awards for their work in invariant representation learning and neural-symbolic deep learning for natural language processing, respectively.

Read More

ISI Researchers Fight Biometric Spoofing

A bad guy cases the supposedly secure Southern California headquarters of a major aerospace corporation with close governmental ties. He notes that everyone from the janitor to the CEO gains entrance after a facial recognition scan confirms their identities.

Read More

Breaking the Cycle of Victimization

A team of researchers at USC Viterbi’s Information Sciences Institute (ISI) created software called DIG that helps investigators quickly scour the internet to identify possible sex traffickers and begin the process of capturing, charging and convicting them.

Read More
See More Stories »

Feature Story

ISI Researcher's Machine Learning Method Unearths Early Signs of Alzheimer’s

January 28, 2019

Nearly 50 million people worldwide have Alzheimer’s disease or another form of dementia. While age is the greatest risk factor for developing the disease, researchers believe most Alzheimer’s cases occur as a result of complex interactions among genes and other factors. But those factors and the role they play are not known—yet.

In a new study, USC researchers used machine learning to identify potential blood-based markers of Alzheimer’s disease that could help with earlier diagnosis and lead to non-invasive ways of tracking the progress of the disease in patients.

The method was developed by USC computer science research assistant professor Greg Ver Steeg, a senior research lead at the USC Information Sciences Institute (ISI). Machine learning is a subset of artificial intelligence (AI) that gives computers the ability to learn without being explicitly programmed.

“This type of analysis is a novel way of discovering patterns of data to identify key diagnostic markers of disease,” said team member Paul Thompson, the associate director of the USC Mark and Mary Stevens Neuroimaging and Informatics Institute and professor in the Keck School of Medicine at USC. “In a very large database of health measures, it helped us discover predictive features of Alzheimer’s disease that nobody suspected were there.”

The study, “Uncovering Biologically Coherent Peripheral Signatures of Health and Risk for Alzheimer’s Disease in the Aging Brain,” appeared in Frontiers in Aging Neuroscience, Nov. 28. The study authors are from the USC Mark and Mary Stevens Neuroimaging and Informatics Institute and the USC Information Sciences Institute.  

Read More

Follow ISI

ISI Annual Report

View the 2017 ISI Annual Report.

Events

Unless otherwise noted, seminars are open to the public.

Feb 28Dr. Sébastien Bardin, CEAISI Seminar Talk

Formal methods: from source-level safety to binary-level security

11:00am PST
Mar 01Ayush Jaiswal, VISTAAI Seminar

Unified Adversarial Invariance

11:00am - 12:00pm PST
See More Events »

ISI Seminar Series

Keep up-to-date with the ISI seminars by subscribing below. You will have the option of subscribing to individual seminar topics.

Subscribe to seminar notifications

Feature Story

ISI Researcher's Machine Learning Method Unearths Early Signs of Alzheimer’s

January 28, 2019

Nearly 50 million people worldwide have Alzheimer’s disease or another form of dementia. While age is the greatest risk factor for developing the disease, researchers believe most Alzheimer’s cases occur as a result of complex interactions among genes and other factors. But those factors and the role they play are not known—yet.

In a new study, USC researchers used machine learning to identify potential blood-based markers of Alzheimer’s disease that could help with earlier diagnosis and lead to non-invasive ways of tracking the progress of the disease in patients.

The method was developed by USC computer science research assistant professor Greg Ver Steeg, a senior research lead at the USC Information Sciences Institute (ISI). Machine learning is a subset of artificial intelligence (AI) that gives computers the ability to learn without being explicitly programmed.

“This type of analysis is a novel way of discovering patterns of data to identify key diagnostic markers of disease,” said team member Paul Thompson, the associate director of the USC Mark and Mary Stevens Neuroimaging and Informatics Institute and professor in the Keck School of Medicine at USC. “In a very large database of health measures, it helped us discover predictive features of Alzheimer’s disease that nobody suspected were there.”

The study, “Uncovering Biologically Coherent Peripheral Signatures of Health and Risk for Alzheimer’s Disease in the Aging Brain,” appeared in Frontiers in Aging Neuroscience, Nov. 28. The study authors are from the USC Mark and Mary Stevens Neuroimaging and Informatics Institute and the USC Information Sciences Institute.  

Read More