
Clustering Web Pages Based on Structure and Style Similarity

Thamme Gowda1 and Chris Mattmann1,2

1University of Southern California, Los Angeles, CA
Email: {thammegowda.n, mattmann}@usc.edu

2NASA Jet Propulsion Laboratory, Pasadena, CA
Email: chris.a.mattmann@jpl.nasa.gov

Abstract

We consider cluster analysis task on web pages based
on various techniques to group the pages. While grouping
the web pages based on the semantic meaning expressed
in the content is required for some applications, we focus
on clustering based on the web page structure and style for
applications like categorization, cleaning, schema detection
and automatic extractions.

This paper describes some of the applications of sim-
ilarity measures and a clustering technique to group the
web pages into clusters. The structural similarity of HTML
pages is measured by using Tree Edit Distance measure on
DOM trees. The stylistic similarity is measured by using
Jaccard similarity on CSS class names. An aggregated sim-
ilarity measure is computed by combining structural and
stylistic measures. A clustering method is then applied to
this aggregated similarity measure to group the documents.

1 Introduction

The World Wide Web (WWW) has become the go to

place for all kinds of information. The web has evolved

from merely connected html documents to rich applications

with asynchronous interaction techniques (e.g., AJAX) and

pleasantly-themed styles. The broad variety of information

on the WWW has facilitated the creation of applications

that rely on this data. These applications require the con-

tent to be fetched, parsed, cleaned, extracted, before any

decisions can be made. One of the challenges faced by cur-

rent data scientists is the extraction of required content on

the WWW through the identification of relevant portions

of web pages and content, and through the elimination of

unnecessary, less-relevant WWW web pages and content.

This process, known as deduplication, relies heavily on be-

ing able to model both the structure of web pages and docu-

ments; as well as using those models to compare and decide

unique documents to include in the corpus, and those too

similar to others that can be removed. Several researchers

have studied this topic [13, 12, 16].

The WWW is described as inter linkage of heteroge-

neous web pages and nowadays it includes all sorts of con-

tent (images, videos, PDF documents, etc.). It is evident

that there are many different ways to produce the content

(e.g., web editors; document authoring applications; cam-

eras; and video systems) and many different ways to con-

sume the content (browsers, mobile devices, game consoles,

etc.)

Thanks to the efforts of World Wide Web Consortium

(W3C), all the producers and consumers of web pages com-
ply to Document Object Model (DOM) specification [14].

These web pages are represented in one or more versions

of the Hyper Text Markup Language (HTML). HTML is

meant to offer clues to the rendering engines to structure

the content. In this paper we describe how the same clues

can be used to measure the similarity between web docu-

ments. We envision these techniques being extensible to

other document types through the use of Apache Tika [9].

Tika can automatically identify a document’s type; parse

the document, and generate an intermediate XHTML repre-

sentation/DOM of metadata of any document - even videos,
and images. A detailed explanation of that process is be-

yond this paper and we refer the reader to Chapters 4 and

Chapters 5 of [9].

Graph and Tree data structures are some of the popular

data structures known to Computer Scientists. The Doc-

ument Object Model (DOM) specifies web document as a

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.30

175

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.30

175

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.30

175

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.30

175

labeled ordered tree of DOM elements and as such we can
apply existing tree based algorithms to them. One of the

interesting algorithms for this context is Tree Edit Distance.

We have used Zhang-Shasha’s Tree Edit distance algorithm

to compute the structural similarity between DOM trees.

It is not surprising to claim that modern web pages have

much more than the content wrapped in HTML tags. Cas-

cading Style Sheets (CSS) serve as a fundamental building

block of web pages. Web developers nowadays put the in-

formation not only in the HTML tag hierarchy but also in

the style sheets. So we do need to consider the styles to de-

termine the similarity between the web pages. In this paper

we describe the Jaccard Similarity, a simple measurement of

resemblance and containment between sets, however other

measures can also be used for the same purpose. In this

case we treat the CSS style sheets as a set of features within

a set corresponding to each web page and use that as the set

comparison.

Client side scripting like JavaScript is another compo-
nent of the web pages determining the overall similarity,

however determining the similarity of scripts is beyond the

scope of this paper.

This article is organized as follows: Section 2 briefs the

scope of clustering the web; Section 3 describes the applica-

tion of Tree Edit Distance (TED) measure and then derives

the structural similarity from the distance measure. Section

4 presents a method to compute stylistic similarity. Sec-

tion 5 presents a way to combine structural similarity with

stylistic similarity and Section 6 presents a method to clus-

ter the web pages based on our similarity measure. Section

8 rounds out the paper.

2 Application of the web document clusters

As of 2016, most modern websites are dynamic in na-

ture. A common practice to achieve the dynamism is by

binding the data models with view templates. The data

models are usually retrieved from structured data stores and

the view is generated by combining it with the templates.

Let d1, d2,... dn be the data models secured in data stores
on the web servers. These could be details of products on

e-commerce sites or user profiles on social networks. Web

servers and application frameworks binds these data mod-

els, d1, d2,... dn, to a programmed view template, Ti, and

generating the HTML views D1, D2,... Dn. In a real crawl

of the WWW, the views from various templates will be

fetched and mixed with each other. One of the applications

of this similarity based web page clustering is to group all

the documents which are generated from the same template.

This operation is a pre-processing step for an automatic ex-

traction of data models that works by reverse engineering

the template bind operation.

In addition to the above, we have found the following

#Document

HTML

HEAD

TITLE STYLE

BODY

... DIV

... H1 P ...

...

Figure 1. Web page viewed as a DOM tree

applications:

1. Extraction of structured content based on structural

alignment - precise clusters results better results with

automated extractions. Also the query based extrac-

tion mechanisms like XPATH, guarantees the yield on

all documents in clusters if it works for single docu-

ment in the cluster.

2. Cleaning - Since the documents which require atten-

tion appear in different clusters than those documents

that do not require attention, the removal of noise can

be done at cluster level instead of document level.

3. Analysis based on the category - Clusters represents

categories of web pages. Each category can be treated

separately for analysis.

4. Crawl coverage test - Clustering the output of crawler

and counting the documents in clusters facilitates

crawl coverage testing. This also helps to more pre-

cisely identify the category of web pages that are avail-

able at the source but missing in the crawler output.

3 Structural Similarity using Tree Edit Dis-
tance Measure

As mentioned in Section 1 and shown in Figure 1, web

pages are structured as labeled ordered trees in which the

textual and multimedia content is wrapped inside theHTML
tags. These tags specifies the clues to the rendering en-

gines to display the content. Thus by its very purpose,

web pages with almost same structures most likely share

the same DOM tree structure.

We have reviewed Tree Edit Distance (TED) algorithms

for determining the similarities [3, 17]. We applied Zhang

- Shasha’s algorithm for labeled rooted trees because of its

simplicity and completeness [17].

Highlights of the Zhang-Shasha’s algorithm include

those enumerated below.

176176176176

HTML[9]

HEAD[3]

TITLE[1] STYLE[2]

BODY[8]

DIV[6]

H1[4] P[5]

A[7]

Figure 2. A sample DOM tree with post order
numbering for DOM elements

• The elements in tree are indexed in post order as shown

in Figure 2, the nodes in the DOM tree are similarly

indexed in post order.

• The tree is incrementally built from smaller forests and

the edit cost between two forests is computed by grad-

ually aligning nodes with Insert, Remove and Replace

operations as described in [17].

• Dynamic programming is used to efficiently compute

the edit distance between the root nodes of two DOM

trees.

The function treedistance(T1, T2) is defined as per
[17] with custom costs for γinsert, γremove, and γupdate
for insert, remove, and replace operations respec-
tively. The function returns a positive cost associated
for the sequence of edit operations required to transform

T1 → T2. Since the Edit Distance is unbounded, the fol-

lowing normalization is performed. Let γmax be the maxi-

mum of γinsert, γremove, and γupdate costs. The structural
similarity of two DOM trees, T1 and T2, is determined by :

similarity = 1− treedistance(T1, T2)

γmax(| T1 | + | T2 |)
In our experimental evaluation, we noted that the Zhang-

Shasha’s tree edit distance (TED) algorithm is slower for

modern web pages due to its higher time complexity. Zhang

Shasha’s TED algorithm has the worst case time com-

plexity of O(|T1| × |T2| ×min(depth(T1), leaves(T1))×
min(depth(T2), leaves(T2))) and the space complexity of
O(|T1| × |T2|) i.e., in the order of O(n4) and O(n2) re-
spectively [17]. We also evaluated Robust algorithm for

Tree Edit Distance (RTED) [10] and All Path Tree Edit

Distance (APTED) [11] for an efficient replacement. The

RTED has the time complexity of O(n3) and space com-
plexity of O(n2). Results showed that RTED is slightly
faster than Zhang-Shasha’s algorithm for modern web pages

but it uses comparatively higher memory due to its higher

constant in the space complexity. The newer APTED imple-

mentation from the same authors combines best of perfor-

mance and memory efficiency. In our practical system we

def classes(doc):
get all unique values of ’class’
classes = set(xpath(doc,

’//*[@class]/@class’))
result = set()
for cls in classes:
class names separated by space
add all the class names to set
res.add_all(cls.split(’\s+’))
return result

Figure 3. Getting set of unique CSS class
names

used APTED implementation for structural similarity eval-

uation. This decision for reducing the runtime did not al-

ter accuracy of results as the tree edit distance is same for

chosen γinsert, γremove, and γupdate costs irrespective of
implementation mechanism.

The tree edit distance measure behaves precisely for

a vast majority of documents. However the results have

shown that the tree edit distance measure alone is not

sufficient to accurately determine the similarity of web

pages. For instance, web pages with uneven number of

repeated groups tends to possess higher tree edit distance

even though have same DOM structure at the higher level.

Some of the examples of repeated groups are user com-

ments to blog posts and listing of results in search pages.

Even though two blog posts are similar in DOM structure,

the unequal number of comments causes higher tree edit

distance and thus lower structural similarity. However all

the repeated groups possess similar styles, so the next sec-

tion describes our proposed stylistic similarity measure to

address these situations.

4 Stylistic Similarity using Jaccard Similar-
ity Measure

Style of the webpages present in Cascading Style Sheets

are also critical information to determine the similarity of

web pages. The documents generated by using the same

template possess same styles. Web developers have the op-

tion to specify the styles either inline with the DOM ele-

ments as a value to the style attribute or via the class
attribute. The scope of the method described next is limited

to the high level analysis of class values.
Let D1 and D2 be two web pages for the sake of com-

puting the stylistic similarity. The set of style class names

are retrieved by using W3C’s DOM API and an XPATH

expression as shown by the code snippet in Figure 3.

Since the set theoretic based similarity measure efficiently

177177177177

addresses the repetitions in CSS class names across the

documents, we chose to use Jaccard’s similarity for stylistic

measure. The Jaccard similarity coefficient of styles is

computed by determining the fraction of styles overlapping

in both of them[15]:

A = classes(D1)

B = classes(D2)

style similarity =
| A ∩B |

| A | + | B | − | A ∩B |
Implications of Jaccard’s Similarity coefficient in style

class names is comprised of :

• Since the unique class names are used for computing

the similarity, the unequal number of repeated groups

does not alter the stylistic similarity.

• The documents displaying similar content possess the

same set of class names thus they result in a higher

value for the Jaccard similarity coefficient.

• The stylistic similarity measure might also cause false

positive for the dissimilar documents from same web-

site. This is due to the fact that the styles are most

likely kept consistent across all the web pages in the

same website. Thus it only complements the proposed

structural similarity measure defined in Section 3.

The next section describes a way to combine stylistic and

structural similarity measures with an aim to reduce false

positives and false negatives.

5 Aggregating the Structural and Stylistic
Similarities

The structural and stylistic similarities are computed
as per section 3 and 4 respectively. The significance of

structural and similarities for grouping the web pages varies

greatly depending on the data set as not all websites are cre-

ated equal. A constant, κ of range [0.0, 1.0] is chosen as a
fraction of significance of structural similarity. Thus, the
aggregated similarity is obtained by the following:

similarity = κ · structural similarity

+ (1− κ) · stylistic similarity (1)

To start with, we can give equal significance to the DOM

structure and CSS style features by choosing κ = 0.5. How-
ever, κ is a way to experiment with various levels of signif-
icance to find the best value for any given data set.

6 Clustering based on Similarity Measures

The aggregated similarity from Section 5 has been used

as the deciding factor for partitioning the web pages into

clusters. Since the web pages are arbitrary in DOM struc-

ture and CSS styles, it is expected that the clusters are non-

globular in shapes. In addition, the number of clusters, i.e.

kinds of web pages, in the dataset cannot be easily antici-

pated. These insights ruled out the possibility of using clus-

tering techniques that requires prior knowledge of number

of clusters. The shared nearest neighbors method of Jarvis

and Patrick [8] serves as a good fit for clustering the web

pages based on pairwise similarity measures. It is an Hierar-

chical Agglomerative Clustering (HAC) technique capable

of producing non globular clusters. This technique also re-

duces the effect of outliers in dataset. The authors of Shared

Near Neighbor Clustering technique suggested an imple-

mentation as follows: After computing the similarity matrix

of size n× n, the neighborhood table of size n× (k+ 1) is
constructed. Further more the neighbors are ordered based

on the decreasing order of similarity. Note that the node

itself appears at the zeroth position in the neighborhood be-

cause of its highest similarity with itself. Two rows of the

neighborhood table can be collapsed (thus growing the clus-

ter size and reducing the number of clusters) to one if they

share at least kt number of neighbors. This collapsing oper-
ation is repeated until no further collapsing is possible or a

maximum of kmax iterations are reached. At the end of this

step, final clusters of web pages are produced based on the

remaining rows in the neighborhood table.

One of the requirement of this clustering system is to

be able to cluster larger output from web crawlers. This re-

quirement forced us to scale horizontally on cluster comput-

ing systems. We noted that the table datastructure is com-

plex to scale on distributed clusters. Our implementation

of shared near neighbor clustering algorithm has following

improvements:

• We used graph data structures in which vertices are

clusters and edges are similarity measures between

them. We built upon the Apache™ Spark’s GraphX

library [6] to scale the graph size.

• Our work followed the agglomerative (bottom-up) ap-

proach and based on this initially each document be-

longed to its own Vertex. On each successive itera-

tion, vertices which share near neighbors are merged.

The information of documents belonging to clusters

are stored as properties in vertices. Vertex properties

are updated on every merge with its near neighbor.

• Instead of kt number of neighbors as a threshold to
merge clusters, we generalized the threshold by mak-

ing use of kp percent of overlap between the clusters.

178178178178

Figure 4. Total 12 clusters when threshold is
90%

7 Evaluation

As part of DARPAMEMEX project[4], we used Apache

Nutch[5] web crawler to fetch web pages related to pub-

lic listing classifieds. Our test dataset included 1310 pages

from a popular weapons classifieds site. There were 987

web pages having details of weapon ads, 311 web pages

had search and categorical listing details and the remaining

12 of them included index, contact, about, policy and other

pages that are typical on an e-commerce site. We followed

the methods described above to cluster these pages. The re-

sults are then visualized using cluster visualization chart of

Data Driven Documents [2, 1].

Initially, we used a threshold of 90% similarity to treat

documents as near neighbors and a threshold of 90% shared

near neighbors to merge the clusters. With these parame-

ters, we obtained the clusters as shown in Figure 4. After

the careful investigation we found that there were 12 clus-

ters in the dataset. A total of 981 out of 987 ad details pages

were belonged to same cluster and the missing 6 documents

resided in their own clusters. All the 311 documents of cat-

egorical and search listing type pages were correctly clus-

tered into the second largest cluster as in Figure 4. Interest-

ingly, the web pages such as contact form, policy and home

index pages stayed in the outlier clusters.

In later tests we altered the threshold values. At first,

we raised both the similarity and near neighbor thresholds

Figure 5. Total 24 clusters when threshold is
95%

to 95%, and found that there were a total of 24 clusters

as shown in Figure 5. The ad details clusters were split

into several clusters of smaller size. As expected, the doc-

uments in the clusters were more similar than earlier. With

few more trials, we found the optimal threshold values for

our test dataset, which was approximately 85% similarity

to treat them as near neighbors and 85% overlap between

shared near neighbors. The final clusters are as shown in the

Figure 6. With these thresholds, we found that all the 311

pages of listing type in input dataset belonged to the same

cluster. Out of 987 ad detail pages, 982 of them resided in

a single cluster and the remaining 5 resided in a different

cluster. We found that those 5 misplaced pages missed few

html elements that are usually present in other 982 pages.

The remaining 3 clusters were made of outliers such as in-

dex and contact pages.

8 Conclusion and Future Work

We have described our approach for leveraging the

DOM-based structure of web pages to determine similarity

between those pages using Tree Edit Distance on the DOM,

and using Jaccard Similarity on the stylesheet information.

We have shown a shared near neighbor method to combine

these information and so far the early evaluation from these

results is positive.

Our future work is expanding our evaluation in open

179179179179

Figure 6. Total 5 clusters when threshold is
85%

datasets provided from the DARPA Memex Deep Search

project and efforts for which our team is a contributor to.

In addition we plan on applying our similarity metric to any

type of document (not just web pages) using Apache Tika

[7] as a method first to convert any document into a DOM.

Acknowledgments

This work was supported by the DARPA

XDATA/Memex program. In addition, the NSF Polar

Cyberinfrastructure award numbers PLR-1348450 and

PLR-144562 funded a portion of the work. Effort sup-

ported in part by JPL, managed by the California Institute

of Technology on behalf of NASA.

References

[1] M. Bostock. D3.js - data-driven documents, 2016. URL:

https://d3js.org/; [Online; Accessed: 16-Jun-

2016].
[2] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven doc-

uments. IEEE transactions on visualization and computer
graphics, 17(12):2301–2309, 2011.

[3] W. Chen. New algorithm for ordered tree-to-tree correction

problem. Journal of Algorithms, 40(2):135 – 158, 2001.
[4] DARPA. Memex (domain-specific search), 2016. URL:

http://www.darpa.mil/program/memex; [On-

line; Accessed: 16-Jun-2016].

[5] A. S. Foundation. Apache nutch, 2016. URL: http:
//nutch.apache.org/; [Online; Accessed: 16-Jun-
2016].

[6] A. S. Foundation. Apache spark, 2016. URL: http:
//spark.apache.org/graphx/; [Online; Accessed:
16-Jun-2016].

[7] A. S. Foundation. Apache tika, 2016. URL: https://
tika.apache.org/; [Online; Accessed: 16-Jun-2016].

[8] R. Jarvis and E. A. Patrick. Clustering using a similarity

measure based on shared near neighbors. Computers, IEEE
Transactions on, C-22(11):1025–1034, Nov 1973.

[9] C. Mattmann and J. Zitting. Tika in action. Manning Publi-
cations Co., 2011.

[10] M. Pawlik and N. Augsten. Rted: A robust algorithm for the

tree edit distance. Proc. VLDB Endow., 5(4):334–345, Dec.
2011.

[11] M. Pawlik and N. Augsten. Tree edit distance: Robust and

memory-efficient. Information Systems, 56:157–173, 2016.
[12] P. Ramirez and C. Mattmann. Ace: improving search en-

gines via automatic concept extraction. In Information
Reuse and Integration, 2004. IRI 2004. Proceedings of the
2004 IEEE International Conference on, pages 229–234,
Nov 2004.

[13] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laen-

der. Automatic web news extraction using tree edit dis-

tance. In Proceedings of the 13th International Conference
on World Wide Web, WWW ’04, pages 502–511, New York,
NY, USA, 2004. ACM.

[14] W3C. Document object model (dom) level 3 core specifi-

cation, 2004. URL: http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407/ [Online; Ac-
cessed: 03-Apr-2016].

[15] Wikipedia. Jaccard index, 2016. URL: https://web.
archive.org/web/20160403164752/https:
//en.wikipedia.org/wiki/Jaccard_index;
[Online; Accessed: 03-Apr-2016].

[16] Y. Zhai and B. Liu. Web data extraction based on partial tree

alignment. In Proceedings of the 14th International Confer-
ence on World Wide Web, WWW ’05, pages 76–85, New
York, NY, USA, 2005. ACM.

[17] K. Zhang and D. Shasha. Simple fast algorithms for the

editing distance between trees and related problems. SIAM
J. Comput., 18(6):1245–1262, Dec. 1989.

180180180180

